-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconcat_replicates.py
78 lines (68 loc) · 2.75 KB
/
concat_replicates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# given csv file with filenames and metadata
# concatenate files from the same exeperiment
import os
import re
import csv
import pandas as pd
import argparse
from collections import defaultdict as dd
from collections import OrderedDict as od
# set command line arguments
parser = argparse.ArgumentParser(description='concatenates csv files based on metadata')
parser.add_argument('metadatafile', help='file containing list of files and metadata')
parser.add_argument('csvdir',help='directory containing csv files to be concatenated')
parser.add_argument('-o','--outputdir', help='where to write the output files',default='outdir')
# given the code for an experiment and the list of files
# for each replicate, read each file and concatenate into
# a single csv file
def concat(code,replist):
#print "code:",code
# want to output in order of replicate
ordered_dict = od(sorted(replist.items(), key=lambda x:int(x[0])))
dataframes=[]
for rep,filelist in ordered_dict.items():
for file in filelist:
#print rep,file
fullpath = args.csvdir+'/'+file+'_1.csv'
if os.path.isfile(fullpath):
df = pd.read_csv(fullpath)
# add a replicate column
df['replicate']=rep
dataframes.append(df)
else:
print "no file",fullpath
# add replicate column to dataframe
# concatenate and output to csv, ignoring the index
uberdf = pd.concat(dataframes,ignore_index=True)
outputfile = args.outputdir+'/'+code+'.csv'
print outputfile
uberdf.to_csv(outputfile,index=False)
def main(args):
df = pd.read_csv(args.metadatafile)
if not os.path.exists(args.outputdir):
os.makedirs(args.outputdir)
# drop rows that describe metadata sheets only (no Code)
df.dropna(subset=['Code'],inplace=True)
# remove the rows where Conditions are undefined
undef="undefined"
df = df.query('Conditions != @undef')
# make a dictionary to store, for each code, the list of
# filenames for each replicate
codemap = dd(lambda: dd(list))
for row_index, row in df.iterrows():
filename = row['Filename']
code = row['Code']
# extract the replicate and then remove to get code only
pattern = re.compile('-(\d+)')
m = re.search(pattern,code)
replicate = m.group(1)
codeonly = re.sub(pattern,'',code)
#print filename,code,codeonly,replicate
codemap[codeonly][replicate].append(filename)
for code,replist in codemap.items():
concat(code,replist)
#for rep,files in filelist.items():
#print code,rep,files
if __name__ == '__main__':
args = parser.parse_args()
main(args)