-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathdemo.py
48 lines (44 loc) · 1.74 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
import argparse
import torch
import process_stylization
from photo_wct import PhotoWCT
parser = argparse.ArgumentParser(description='Photorealistic Image Stylization')
parser.add_argument('--model', default='./PhotoWCTModels/photo_wct.pth')
parser.add_argument('--content_image_path', default='./images/content1.png')
parser.add_argument('--content_seg_path', default=[])
parser.add_argument('--style_image_path', default='./images/style1.png')
parser.add_argument('--style_seg_path', default=[])
parser.add_argument('--output_image_path', default='./results/example1.png')
parser.add_argument('--save_intermediate', action='store_true', default=False)
parser.add_argument('--fast', action='store_true', default=False)
parser.add_argument('--no_post', action='store_true', default=False)
parser.add_argument('--cuda', type=int, default=1, help='Enable CUDA.')
args = parser.parse_args()
# Load model
p_wct = PhotoWCT()
p_wct.load_state_dict(torch.load(args.model))
if args.fast:
from photo_gif import GIFSmoothing
p_pro = GIFSmoothing(r=35, eps=0.001)
else:
from photo_smooth import Propagator
p_pro = Propagator()
if args.cuda:
p_wct.cuda(0)
process_stylization.stylization(
stylization_module=p_wct,
smoothing_module=p_pro,
content_image_path=args.content_image_path,
style_image_path=args.style_image_path,
content_seg_path=args.content_seg_path,
style_seg_path=args.style_seg_path,
output_image_path=args.output_image_path,
cuda=args.cuda,
save_intermediate=args.save_intermediate,
no_post=args.no_post
)