-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathcudaOpenMP.cu
159 lines (134 loc) · 5.83 KB
/
cudaOpenMP.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Multi-GPU sample using OpenMP for threading on the CPU side
* needs a compiler that supports OpenMP 2.0
*/
#include <helper_cuda.h>
#include <omp.h>
#include <stdio.h> // stdio functions are used since C++ streams aren't necessarily thread safe
using namespace std;
// a simple kernel that simply increments each array element by b
__global__ void kernelAddConstant(int *g_a, const int b) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
g_a[idx] += b;
}
// a predicate that checks whether each array element is set to its index plus b
int correctResult(int *data, const int n, const int b) {
for (int i = 0; i < n; i++)
if (data[i] != i + b) return 0;
return 1;
}
int main(int argc, char *argv[]) {
int num_gpus = 0; // number of CUDA GPUs
printf("%s Starting...\n\n", argv[0]);
/////////////////////////////////////////////////////////////////
// determine the number of CUDA capable GPUs
//
cudaGetDeviceCount(&num_gpus);
if (num_gpus < 1) {
printf("no CUDA capable devices were detected\n");
return 1;
}
/////////////////////////////////////////////////////////////////
// display CPU and GPU configuration
//
printf("number of host CPUs:\t%d\n", omp_get_num_procs());
printf("number of CUDA devices:\t%d\n", num_gpus);
for (int i = 0; i < num_gpus; i++) {
cudaDeviceProp dprop;
cudaGetDeviceProperties(&dprop, i);
printf(" %d: %s\n", i, dprop.name);
}
printf("---------------------------\n");
/////////////////////////////////////////////////////////////////
// initialize data
//
unsigned int n = num_gpus * 8192;
unsigned int nbytes = n * sizeof(int);
int *a = 0; // pointer to data on the CPU
int b = 3; // value by which the array is incremented
a = (int *)malloc(nbytes);
if (0 == a) {
printf("couldn't allocate CPU memory\n");
return 1;
}
for (unsigned int i = 0; i < n; i++) a[i] = i;
////////////////////////////////////////////////////////////////
// run as many CPU threads as there are CUDA devices
// each CPU thread controls a different device, processing its
// portion of the data. It's possible to use more CPU threads
// than there are CUDA devices, in which case several CPU
// threads will be allocating resources and launching kernels
// on the same device. For example, try omp_set_num_threads(2*num_gpus);
// Recall that all variables declared inside an "omp parallel" scope are
// local to each CPU thread
//
omp_set_num_threads(
num_gpus); // create as many CPU threads as there are CUDA devices
// omp_set_num_threads(2*num_gpus);// create twice as many CPU threads as there
// are CUDA devices
#pragma omp parallel
{
unsigned int cpu_thread_id = omp_get_thread_num();
unsigned int num_cpu_threads = omp_get_num_threads();
// set and check the CUDA device for this CPU thread
int gpu_id = -1;
checkCudaErrors(cudaSetDevice(
cpu_thread_id %
num_gpus)); // "% num_gpus" allows more CPU threads than GPU devices
checkCudaErrors(cudaGetDevice(&gpu_id));
printf("CPU thread %d (of %d) uses CUDA device %d\n", cpu_thread_id,
num_cpu_threads, gpu_id);
int *d_a =
0; // pointer to memory on the device associated with this CPU thread
int *sub_a =
a +
cpu_thread_id * n /
num_cpu_threads; // pointer to this CPU thread's portion of data
unsigned int nbytes_per_kernel = nbytes / num_cpu_threads;
dim3 gpu_threads(128); // 128 threads per block
dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads));
checkCudaErrors(cudaMalloc((void **)&d_a, nbytes_per_kernel));
checkCudaErrors(cudaMemset(d_a, 0, nbytes_per_kernel));
checkCudaErrors(
cudaMemcpy(d_a, sub_a, nbytes_per_kernel, cudaMemcpyHostToDevice));
kernelAddConstant<<<gpu_blocks, gpu_threads>>>(d_a, b);
checkCudaErrors(
cudaMemcpy(sub_a, d_a, nbytes_per_kernel, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaFree(d_a));
}
printf("---------------------------\n");
if (cudaSuccess != cudaGetLastError())
printf("%s\n", cudaGetErrorString(cudaGetLastError()));
////////////////////////////////////////////////////////////////
// check the result
//
bool bResult = correctResult(a, n, b);
if (a) free(a); // free CPU memory
exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
}