-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathmatrixMulDynlinkJIT.cpp
355 lines (284 loc) · 11.5 KB
/
matrixMulDynlinkJIT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Matrix multiplication: C = A * B.
* Host code.
*
* This sample revisits matrix multiplication with CUDA task. The code of matrix
* multiplication is exactly the same as in matrixMulDrv sample of this SDK.
* This sample, however, demonstrates how to link CUDA driver at runtime and
* how to perform JIT (just-in-time) compilation of CUDA kernel from PTX image,
* stored in memory.
*
* For more details on acquiring auto-generated sources refer README.TXT file
* in "extras" directory.
*
* Unlike CUBLAS, the sample doesn't address high-performance matrix
* multiplication.
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// includes, CUDA
#include "cuda_drvapi_dynlink.h"
#include "helper_cuda_drvapi.h"
// includes, project
#include "matrixMul.h"
#include "matrixMul_kernel_32_ptxdump.h"
#include "matrixMul_kernel_64_ptxdump.h"
extern "C" void computeGold(float *, const float *, const float *, unsigned int, unsigned int, unsigned int);
#if defined _MSC_VER
#pragma warning (disable : 4312)
#endif
////////////////////////////////////////////////////////////////////////////////
// Globals
////////////////////////////////////////////////////////////////////////////////
CUcontext g_cuContext;
bool noprompt = false;
static const char *sSDKsample = "matrixMulDynlinkJIT (CUDA dynamic linking)";
////////////////////////////////////////////////////////////////////////////////
// Allocates a matrix with random float entries
////////////////////////////////////////////////////////////////////////////////
void randomInit(float *data, size_t size)
{
for (size_t i = 0; i < size; ++i)
{
data[i] = rand() / (float)RAND_MAX;
}
}
////////////////////////////////////////////////////////////////////////////////
// CUDA driver runtime linking and initialization
////////////////////////////////////////////////////////////////////////////////
CUresult initCUDA(int argc, char **argv, CUfunction *pMatrixMul, int *block_size_out)
{
CUresult status;
CUdevice cuDevice;
CUmodule cuModule;
CUfunction cuFunction;
int major, minor, block_size, devID = 0;
char deviceName[256];
// link to cuda driver dynamically
checkCudaErrors(cuInit(0, __CUDA_API_VERSION));
// This assumes that the user is attempting to specify a explicit device -device=n
if (argc > 1)
{
bool bFound = false;
for (int param=0; param < argc; param++)
{
if (!strncmp(argv[param], "-device", 7))
{
int i=(int)strlen(argv[1]);
while (argv[1][i] != '=')
{
i--;
}
devID = atoi(&argv[1][++i]);
bFound = true;
}
if (bFound)
break;
}
}
// get cuda-capable device count
int deviceCount = 0;
checkCudaErrors(cuDeviceGetCount(&deviceCount));
if (deviceCount == 0)
{
fprintf(stderr, "No devices supporting CUDA detected, exiting...\n");
exit(EXIT_SUCCESS);
}
if (devID < 0) devID = 0;
if (devID > deviceCount -1)
{
fprintf(stderr, "initCUDA (Device=%d) invalid GPU device. %d GPU device(s) detected.\n\n", devID, deviceCount);
status = CUDA_ERROR_NOT_FOUND;
cuCtxDestroy(g_cuContext);
exit(EXIT_FAILURE);
}
// pick up device with zero ordinal (default, or devID)
checkCudaErrors(cuDeviceGet(&cuDevice, devID));
// get compute capabilities and the devicename
checkCudaErrors(cuDeviceComputeCapability(&major, &minor, cuDevice));
checkCudaErrors(cuDeviceGetName(deviceName, 256, cuDevice));
printf("> Device %d: \"%s\" with Compute %d.%d capability\n", cuDevice, deviceName, major, minor);
block_size = 32;
*block_size_out = block_size;
// create context for picked device
status = cuCtxCreate(&g_cuContext, 0, cuDevice);
if (CUDA_SUCCESS != status)
{
cuCtxDestroy(g_cuContext);
exit(EXIT_SUCCESS);
}
// setup JIT compilation options and perform compilation
{
// in this branch we use compilation with parameters
const unsigned int jitNumOptions = 3;
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
void **jitOptVals = new void *[jitNumOptions];
// set up size of compilation log buffer
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
int jitLogBufferSize = 1024;
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
// set up pointer to the compilation log buffer
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
char *jitLogBuffer = new char[jitLogBufferSize];
jitOptVals[1] = jitLogBuffer;
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[2] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
jitOptVals[2] = (void *)(size_t)jitRegCount;
// compile with set parameters
printf("> Compiling CUDA module\n");
#if defined(_WIN64) || defined(__LP64__)
status = cuModuleLoadDataEx(&cuModule, matrixMul_kernel_64_ptxdump, jitNumOptions, jitOptions, (void **)jitOptVals);
#else
status = cuModuleLoadDataEx(&cuModule, matrixMul_kernel_32_ptxdump, jitNumOptions, jitOptions, (void **)jitOptVals);
#endif
printf("> PTX JIT log:\n%s\n", jitLogBuffer);
delete [] jitOptions;
delete [] jitOptVals;
delete [] jitLogBuffer;
}
if (CUDA_SUCCESS != status)
{
printf("Error while compiling PTX\n");
cuCtxDestroy(g_cuContext);
exit(EXIT_FAILURE);
}
// retrieve CUDA function from the compiled module
status = cuModuleGetFunction(&cuFunction, cuModule,
(block_size == 16) ? "matrixMul_bs16_32bit" : "matrixMul_bs32_32bit");
if (CUDA_SUCCESS != status)
{
cuCtxDestroy(g_cuContext);
exit(EXIT_FAILURE);
}
*pMatrixMul = cuFunction;
return CUDA_SUCCESS;
}
////////////////////////////////////////////////////////////////////////////////
// Entry point
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
printf("[ %s ]\n", sSDKsample);
// initialize CUDA
CUfunction matrixMul = NULL;
int block_size = 0;
checkCudaErrors(initCUDA(argc, argv, &matrixMul, &block_size));
// set seed for rand()
srand(2006);
// allocate host memory for matrices A and B
size_t size_A = WA * HA;
size_t mem_size_A = sizeof(float) * size_A;
size_t size_B = WB * HB;
size_t mem_size_B = sizeof(float) * size_B;
float *h_A = (float *) malloc(mem_size_A);
float *h_B = (float *) malloc(mem_size_B);
// initialize host memory
randomInit(h_A, size_A);
randomInit(h_B, size_B);
// allocate device memory
CUdeviceptr d_A;
checkCudaErrors(cuMemAlloc(&d_A, mem_size_A));
CUdeviceptr d_B;
checkCudaErrors(cuMemAlloc(&d_B, mem_size_B));
// copy host memory to device
checkCudaErrors(cuMemcpyHtoD(d_A, h_A, mem_size_A));
checkCudaErrors(cuMemcpyHtoD(d_B, h_B, mem_size_B));
// allocate device memory for result
size_t size_C = WC * HC;
size_t mem_size_C = sizeof(float) * size_C;
CUdeviceptr d_C;
checkCudaErrors(cuMemAlloc(&d_C, mem_size_C));
// allocate mem for the result on host side
float *h_C = (float *) malloc(mem_size_C);
#if __CUDA_API_VERSION >= 4000
{
// This is the new CUDA 4.0 API for Kernel Parameter passing and Kernel Launching (simpler method)
int Matrix_Width_A = WA;
int Matrix_Width_B = WB;
void *args[5] = { &d_C, &d_A, &d_B, &Matrix_Width_A, &Matrix_Width_B };
checkCudaErrors(cuLaunchKernel(matrixMul, (WC/block_size), (HC/block_size), 1,
block_size , block_size , 1,
0,
NULL, args, NULL));
}
#else // __CUDA_API_VERSION <= 3020
{
// This is the older CUDA Driver API for Kernel Parameter passing and Kernel Launching
int offset = 0;
{
// setup execution parameters
checkCudaErrors(cuParamSetv(matrixMul, offset, &d_C, sizeof(d_C)));
offset += sizeof(d_C);
checkCudaErrors(cuParamSetv(matrixMul, offset, &d_A, sizeof(d_A)));
offset += sizeof(d_A);
checkCudaErrors(cuParamSetv(matrixMul, offset, &d_B, sizeof(d_B)));
offset += sizeof(d_B);
}
int Matrix_Width_A = WA;
int Matrix_Width_B = WB;
checkCudaErrors(cuParamSeti(matrixMul, offset, Matrix_Width_A));
offset += sizeof(Matrix_Width_A);
checkCudaErrors(cuParamSeti(matrixMul, offset, Matrix_Width_B));
offset += sizeof(Matrix_Width_B);
checkCudaErrors(cuParamSetSize(matrixMul, offset));
checkCudaErrors(cuFuncSetBlockShape(matrixMul, block_size, block_size, 1));
checkCudaErrors(cuFuncSetSharedSize(matrixMul, 2*block_size*block_size*sizeof(float)));
// set execution configuration for the CUDA kernel
checkCudaErrors(cuLaunchGrid(matrixMul, WC / block_size, HC / block_size));
}
#endif
checkCudaErrors(cuCtxSynchronize());
// copy result from device to host
checkCudaErrors(cuMemcpyDtoH((void *) h_C, d_C, mem_size_C));
// compute reference solution
float *reference = (float *) malloc(mem_size_C);
computeGold(reference, h_A, h_B, HA, WA, WB);
// check result
float diff=0.0f;
for (unsigned int i=0; i<size_C; i++)
{
float tmp = reference[i] - h_C[i];
diff += tmp*tmp;
}
int res = (diff / (float)size_C < 1e-6f);
// clean up memory
free(h_A);
free(h_B);
free(h_C);
free(reference);
checkCudaErrors(cuMemFree(d_A));
checkCudaErrors(cuMemFree(d_B));
checkCudaErrors(cuMemFree(d_C));
checkCudaErrors(cuCtxDestroy(g_cuContext));
printf("Test run %s\n", (1==res) ? "success!" : "failed!");
exit((1 == res) ? EXIT_SUCCESS : EXIT_FAILURE);
}