-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathsimpleCallback.cu
214 lines (168 loc) · 7.44 KB
/
simpleCallback.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample implements multi-threaded heterogeneous computing workloads with
* the new CPU callbacks for CUDA streams and events introduced with CUDA 5.0.
* Together with the thread safety of the CUDA API implementing heterogeneous
* workloads that float between CPU threads and GPUs has become simple and
* efficient.
*
* The workloads in the sample follow the form CPU preprocess -> GPU process ->
* CPU postprocess.
* Each CPU processing step is handled by its own dedicated thread. GPU
* workloads are sent to all available GPUs in the system.
*
*/
// System includes
#include <stdio.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
#include "multithreading.h"
const int N_workloads = 8;
const int N_elements_per_workload = 100000;
CUTBarrier thread_barrier;
void CUDART_CB myStreamCallback(cudaStream_t event, cudaError_t status,
void *data);
struct heterogeneous_workload {
int id;
int cudaDeviceID;
int *h_data;
int *d_data;
cudaStream_t stream;
bool success;
};
__global__ void incKernel(int *data, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) data[i]++;
}
CUT_THREADPROC launch(void *void_arg) {
heterogeneous_workload *workload = (heterogeneous_workload *)void_arg;
// Select GPU for this CPU thread
checkCudaErrors(cudaSetDevice(workload->cudaDeviceID));
// Allocate Resources
checkCudaErrors(cudaStreamCreate(&workload->stream));
checkCudaErrors(
cudaMalloc(&workload->d_data, N_elements_per_workload * sizeof(int)));
checkCudaErrors(cudaHostAlloc(&workload->h_data,
N_elements_per_workload * sizeof(int),
cudaHostAllocPortable));
// CPU thread generates data
for (int i = 0; i < N_elements_per_workload; ++i) {
workload->h_data[i] = workload->id + i;
}
// Schedule work for GPU in CUDA stream without blocking the CPU thread
// Note: Dedicated streams enable concurrent execution of workloads on the GPU
dim3 block(512);
dim3 grid((N_elements_per_workload + block.x - 1) / block.x);
checkCudaErrors(cudaMemcpyAsync(workload->d_data, workload->h_data,
N_elements_per_workload * sizeof(int),
cudaMemcpyHostToDevice, workload->stream));
incKernel<<<grid, block, 0, workload->stream>>>(workload->d_data,
N_elements_per_workload);
checkCudaErrors(cudaMemcpyAsync(workload->h_data, workload->d_data,
N_elements_per_workload * sizeof(int),
cudaMemcpyDeviceToHost, workload->stream));
// New in CUDA 5.0: Add a CPU callback which is called once all currently
// pending operations in the CUDA stream have finished
checkCudaErrors(
cudaStreamAddCallback(workload->stream, myStreamCallback, workload, 0));
CUT_THREADEND;
// CPU thread end of life, GPU continues to process data...
}
CUT_THREADPROC postprocess(void *void_arg) {
heterogeneous_workload *workload = (heterogeneous_workload *)void_arg;
// ... GPU is done with processing, continue on new CPU thread...
// Select GPU for this CPU thread
checkCudaErrors(cudaSetDevice(workload->cudaDeviceID));
// CPU thread consumes results from GPU
workload->success = true;
for (int i = 0; i < N_workloads; ++i) {
workload->success &= workload->h_data[i] == i + workload->id + 1;
}
// Free Resources
checkCudaErrors(cudaFree(workload->d_data));
checkCudaErrors(cudaFreeHost(workload->h_data));
checkCudaErrors(cudaStreamDestroy(workload->stream));
// Signal the end of the heterogeneous workload to main thread
cutIncrementBarrier(&thread_barrier);
CUT_THREADEND;
}
void CUDART_CB myStreamCallback(cudaStream_t stream, cudaError_t status,
void *data) {
// Check status of GPU after stream operations are done
checkCudaErrors(status);
// Spawn new CPU worker thread and continue processing on the CPU
cutStartThread(postprocess, data);
}
int main(int argc, char **argv) {
int N_gpus, max_gpus = 0;
int gpuInfo[32]; // assume a maximum of 32 GPUs in a system configuration
printf("Starting simpleCallback\n");
checkCudaErrors(cudaGetDeviceCount(&N_gpus));
printf("Found %d CUDA capable GPUs\n", N_gpus);
if (N_gpus > 32) {
printf("simpleCallback only supports 32 GPU(s)\n");
}
for (int devid = 0; devid < N_gpus; devid++) {
int SMversion;
cudaDeviceProp deviceProp;
cudaSetDevice(devid);
cudaGetDeviceProperties(&deviceProp, devid);
SMversion = deviceProp.major << 4 + deviceProp.minor;
printf("GPU[%d] %s supports SM %d.%d", devid, deviceProp.name,
deviceProp.major, deviceProp.minor);
printf(", %s GPU Callback Functions\n",
(SMversion >= 0x11) ? "capable" : "NOT capable");
if (SMversion >= 0x11) {
gpuInfo[max_gpus++] = devid;
}
}
printf("%d GPUs available to run Callback Functions\n", max_gpus);
heterogeneous_workload *workloads;
workloads = (heterogeneous_workload *)malloc(N_workloads *
sizeof(heterogeneous_workload));
;
thread_barrier = cutCreateBarrier(N_workloads);
// Main thread spawns a CPU worker thread for each heterogeneous workload
printf("Starting %d heterogeneous computing workloads\n", N_workloads);
for (int i = 0; i < N_workloads; ++i) {
workloads[i].id = i;
workloads[i].cudaDeviceID = gpuInfo[i % max_gpus]; // i % N_gpus;
cutStartThread(launch, &workloads[i]);
}
// Sleep until all workloads have finished
cutWaitForBarrier(&thread_barrier);
printf("Total of %d workloads finished:\n", N_workloads);
bool success = true;
for (int i = 0; i < N_workloads; ++i) {
success &= workloads[i].success;
}
printf("%s\n", success ? "Success" : "Failure");
free(workloads);
exit(success ? EXIT_SUCCESS : EXIT_FAILURE);
}