-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathcopy_traits_sm90_im2col.hpp
928 lines (818 loc) · 36.7 KB
/
copy_traits_sm90_im2col.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
/*! \file
\brief im2col make_tma_copy
*/
#include "cute/arch/copy_sm90.hpp"
#include "cute/arch/copy_sm90_desc.hpp"
#include "cute/tensor.hpp"
#include "cute/algorithm/prefetch.hpp"
namespace cute
{
// Utility for unpacking TMA_LOAD_IM2COL arguments into a CopyOp
template <class CopyOp>
struct TMA_LOAD_IM2COL_Unpack
{
/// Copy from src to dst.
///
/// @param traits Copy traits created with a TMA descriptor that
/// correctly matches the input tensor and other convolution
/// parameters.
///
/// @param src Tile of the im2col-transformed coordinate tensor
/// (result of get_tma_tensor), representing the global-memory
/// tensor from which to load.
///
/// @param dst Shared memory tile, into which to load.
template <class... Args,
class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr void
copy_unpack(Copy_Traits<CopyOp, Args...> const& traits,
Tensor<TS,SLayout> const& src, // tile of the transformed global activation (A) tensor
Tensor<TD,DLayout> & dst) // shared memory tile
{
auto src_coord_offset = src(Int<0>{});
auto src_coord_cwhdn_offset_srt = flatten(src_coord_offset);
// Interpret the TMA IM2COL coordinate as (c, ([w,h,d]), n, ([s,r,t]))
CUTE_STATIC_ASSERT_V(rank(src_coord_offset) == _4{});
CUTE_STATIC_ASSERT_V(rank<1>(src_coord_offset) == rank<3>(src_coord_offset));
if constexpr (detail::is_prefetch<CopyOp>) {
return detail::explode_tuple(detail::CallCOPY<CopyOp>{},
traits.opargs_, tuple_seq<decltype(traits.opargs_)>{},
src_coord_cwhdn_offset_srt, tuple_seq<decltype(src_coord_cwhdn_offset_srt)>{});
} else {
static_assert(is_smem<TD>::value, "SM90_TMA_LOAD_IM2COL requires the destination be shared memory.");
void* dst_ptr = cute::raw_pointer_cast(dst.data());
return detail::explode_tuple(detail::CallCOPY<CopyOp>{},
traits.opargs_, tuple_seq<decltype(traits.opargs_)>{},
make_tuple(dst_ptr), seq<0>{},
src_coord_cwhdn_offset_srt, tuple_seq<decltype(src_coord_cwhdn_offset_srt)>{});
}
}
};
// Copy_Traits for SM90 im2col TMA load comes in two layers.
//
// 1. Copy_Traits<SM90_TMA_LOAD_IM2COL>
// 2. Copy_Traits<SM90_TMA_LOAD_IM2COL_OP>
//
// Copy_Traits<SM90_TMA_LOAD_IM2COL>
// is the "outer" layer. It has a TMA descriptor,
// but no barrier ("tma_mbar"), so it's "nonexecutable."
// One calls its "with" member function with a barrier,
// to get an executable "inner"-layer
// Copy_Traits<SM90_TMA_LOAD_IM2COL_OP> object.
// That object's "copy_unpack" member function
// actually invokes im2col TMA load.
struct SM90_TMA_LOAD_IM2COL_OP : SM90_TMA_LOAD_IM2COL {};
/// @brief Non-executable specialization of Copy_Traits for SM90
/// im2col TMA load, with TMA descriptor but no barrier.
///
/// Use `.with(memory_barrier)` to construct an executable version.
template <class NumBitsPerTMA, class TMATensor>
struct Copy_Traits<SM90_TMA_LOAD_IM2COL, NumBitsPerTMA, TMATensor>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
Im2ColTmaDescriptor tma_desc_;
TMATensor tma_tensor_;
CUTE_HOST_DEVICE constexpr
Im2ColTmaDescriptor const*
get_tma_descriptor() const
{
return &tma_desc_;
}
template <class GShape>
CUTE_HOST_DEVICE constexpr
TMATensor const
get_tma_tensor(GShape const&) const
{
return tma_tensor_;
}
/// @brief Get an executable specialization.
///
/// Copy_Traits specializations with SM90_TMA_LOAD_IM2COL are not
/// directly executable. Instead, call this "with" member function
/// to get an executable specialization. "Executable" means that
/// @c copy_unpack works.
///
/// @param tma_mbar Memory barrier for synchronization
///
/// @param multicast_mask Multicast mask (unused; only exists
/// for interface compatibility with the actual multicast Copy_Traits)
///
/// @return Executable specialization of @c Copy_Traits
CUTE_HOST_DEVICE constexpr
Copy_Traits<SM90_TMA_LOAD_IM2COL_OP, NumBitsPerTMA>
with(uint64_t& tma_mbar, [[maybe_unused]] uint16_t const& multicast_mask = 0) const
{
return {{}, {&tma_desc_, &tma_mbar}};
}
// Copy_Traits specializations with SM90_TMA_LOAD_IM2COL
// are not directly executable. Instead, call .with
// to get an executable specialization.
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst) = delete;
};
/// @brief Executable specialization of Copy_Traits for SM90 im2col
/// TMA load, with TMA descriptor and barrier.
template <class NumBitsPerTMA>
struct Copy_Traits<SM90_TMA_LOAD_IM2COL_OP, NumBitsPerTMA>
: TMA_LOAD_IM2COL_Unpack<SM90_TMA_LOAD_IM2COL_OP>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_LOAD_IM2COL arguments
tuple<
Im2ColTmaDescriptor const*,
uint64_t* // smem mbarrier
> const opargs_;
};
template <class NumBitsPerTMA, class... Args>
struct Copy_Traits<SM90_TMA_LOAD_IM2COL::PREFETCH, NumBitsPerTMA, Args...>
: TMA_LOAD_IM2COL_Unpack<SM90_TMA_LOAD_IM2COL::PREFETCH>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_LOAD_IM2COL::PREFETCH arguments
tuple<Im2ColTmaDescriptor const*> const opargs_;
CUTE_HOST_DEVICE
Copy_Traits(Copy_Traits<SM90_TMA_LOAD_IM2COL, NumBitsPerTMA, Args...> const& traits)
: opargs_({&traits.tma_desc_}) {}
};
//////////////////////////////////////////////////////////////////////////////
///////////////////////////// TMA_LOAD_MULTICAST /////////////////////////////
//////////////////////////////////////////////////////////////////////////////
struct SM90_TMA_LOAD_IM2COL_MULTICAST_OP : SM90_TMA_LOAD_IM2COL_MULTICAST {};
/// @brief Non-executable specialization of Copy_Traits for SM90
/// im2col TMA load, with TMA descriptor but no barrier or multicast
/// mask.
///
/// Use `.with(memory_barrier)` to construct an executable version.
template <class NumBitsPerTMA, class TMATensor>
struct Copy_Traits<SM90_TMA_LOAD_IM2COL_MULTICAST, NumBitsPerTMA, TMATensor>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
Im2ColTmaDescriptor tma_desc_;
TMATensor tma_tensor_;
CUTE_HOST_DEVICE constexpr
Im2ColTmaDescriptor const*
get_tma_descriptor() const {
return &tma_desc_;
}
template <class GShape>
CUTE_HOST_DEVICE constexpr
TMATensor const
get_tma_tensor(GShape const&) const
{
return tma_tensor_;
}
/// @brief Get an executable specialization.
///
/// Copy_Traits specializations with SM90_TMA_LOAD_IM2COL_MULTICAST
/// are not directly executable. Instead, call this "with" member
/// function to get an executable specialization. "Executable"
/// means that @c copy_unpack works.
///
/// @param tma_mbar Memory barrier for synchronization
///
/// @param multicast_mask Multicast mask (defaults to a single CTA)
///
/// @return Executable specialization of @c Copy_Traits
CUTE_HOST_DEVICE constexpr
Copy_Traits<SM90_TMA_LOAD_IM2COL_MULTICAST_OP, NumBitsPerTMA>
with(uint64_t& tma_mbar, uint16_t const& multicast_mask) const {
return {{}, {&tma_desc_, &tma_mbar, multicast_mask}};
}
// Copy_Traits specializations with SM90_TMA_LOAD_IM2COL_MULTICAST
// are not directly executable. Instead, call .with to get an
// executable specialization.
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst) = delete;
};
/// @brief Executable specialization of Copy_Traits for SM90 multicast
/// im2col TMA load, with TMA descriptor, barrier, and multicast mask.
template <class NumBitsPerTMA>
struct Copy_Traits<SM90_TMA_LOAD_IM2COL_MULTICAST_OP, NumBitsPerTMA>
: TMA_LOAD_IM2COL_Unpack<SM90_TMA_LOAD_IM2COL_MULTICAST_OP>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit.
using SrcLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1, NumBitsPerTMA>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_LOAD_IM2COL_MULTICAST arguments
tuple<
Im2ColTmaDescriptor const*,
uint64_t*, // smem mbarrier
uint16_t // multicast mask
> const opargs_;
};
//////////////////////////////////////////////////////////////////////////////
///////////////////////////// TMA_STORE IM2COL////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// The executable SM90_TMA_STORE_IM2COL with tma_desc
template <class NumBitsPerTMA, class TMATensor>
struct Copy_Traits<SM90_TMA_STORE_IM2COL, NumBitsPerTMA, TMATensor>
{
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_1,NumBitsPerTMA>>;
// Map from (dst-thr,dst-val) to bit
using DstLayout = Layout<Shape<_1,NumBitsPerTMA>>;
// Reference map from (thr,val) to bit
using RefLayout = SrcLayout;
// SM90_TMA_STORE_IM2COL arguments
Im2ColTmaDescriptor tma_desc_;
TMATensor tma_tensor_;
// Return TmaDescriptor/TensorMap
CUTE_HOST_DEVICE constexpr
Im2ColTmaDescriptor const*
get_tma_descriptor() const {
return &tma_desc_;
}
template <class GShape>
CUTE_HOST_DEVICE constexpr
TMATensor const
get_tma_tensor(GShape const&) const
{
return tma_tensor_;
}
// This is the copy_unpack dispatch for this Copy_Traits
// Src needs to be a smem tensor
// Dst needs to be a gmem tensor with TmaCoordIterator .data()
template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr void
copy_unpack(Copy_Traits const& traits,
Tensor<TS,SLayout> const& src,
Tensor<TD,DLayout> & dst)
{
static_assert(is_smem<TS>::value, "Expected smem src for SM90_TMA_STORE_IM2COL");
void const* const desc_ptr = &(traits.tma_desc_);
void const* const src_ptr = cute::raw_pointer_cast(src.data());
auto dst_coord = flatten(take<0,3>(dst(Int<0>{})));
return detail::explode_tuple(detail::CallCOPY<SM90_TMA_STORE_IM2COL>{},
make_tuple(desc_ptr, src_ptr), seq<0,1>{},
dst_coord, tuple_seq<decltype(dst_coord)>{});
}
};
namespace detail {
/// @brief Creates a TMA descriptor for im2col TMA load.
///
/// @param tensor_cwhdn Global activation tensor (A matrix of Fprop).
/// This is the original (not im2col-transformed) tensor in global
/// memory.
///
/// @param slayout Rank 2 (M,K) shared memory layout of the activation
/// tensor. Here, K is "GEMM K," not the filter tensor's mode of
/// the same name.
//////
/// @param traversal_stride Traversal strides convolution parameter
//////
/// Each of padding_shape, traversal_stride, and dilation_shape is a
/// tuple whose size is the number of spatial modes (e.g., 3 for a 5-D
/// convolution).
///
/// @return TMA descriptor for im2col TMA load
template <class EngineA, class LayoutA,
class SmemSwizzle, class TMALayout,
class LowerCornerStride,
class UpperCornerStride,
class LowerPaddingStride,
class UpperPaddingStride,
class TraversalStride,
class LowerSRTStride,
class DilationStride>
CUTE_HOST
auto
make_im2col_tma_copy_desc(
Tensor<EngineA, LayoutA> const& tensor_cwhdn, // (C,W,H,D,N)
uint32_t range_c, // TILE_C
uint32_t range_whdn, // TILE_WHDN
SmemSwizzle const& smem_swizzle, // Swizzle
TMALayout const& tma_layout_vt, // TMA layout
LowerCornerStride const& lower_corner_whd, // WHD offset of the "base pointer"
UpperCornerStride const& upper_corner_whd, // WHD upper corner
LowerPaddingStride const& lower_padding_whd, // WHD lower padding
UpperPaddingStride const& upper_padding_whd, // WHD upper padding
TraversalStride const& stride_whd, // WHD traversal stride
LowerSRTStride const& lower_srt, // SRT offset of the "base pointer"
DilationStride const& stride_srt) // SRT stride - dilation
{
static_assert(is_gmem<EngineA>::value, "Tensor must point to GPU global memory.");
using value_type = typename EngineA::value_type;
constexpr uint32_t num_total_modes = LayoutA::rank;
constexpr int num_spatial_modes = num_total_modes - 2;
// Gmem starting address
void* gmem_address = (void*) raw_pointer_cast(tensor_cwhdn.data());
// Gmem extents are just the tensor shape
cute::array<uint64_t, 5> gmem_prob_shape = {1,1,1,1,1};
for_each(make_seq<num_total_modes>{}, [&](auto i) {
gmem_prob_shape[i] = static_cast<uint64_t>(shape<i>(tensor_cwhdn));
});
// Gmem strides are byte strides of the activation tensor in CWHDN order
cute::array<uint64_t, 5> gmem_prob_stride = {0,0,0,0,0};
for_each(make_seq<num_total_modes>{}, [&](auto i) {
gmem_prob_stride[i] = sizeof(value_type) * stride<i>(tensor_cwhdn);
});
// Traversal strides are a function of the dilation shape
// corresponding to spatial (WHD) modes.
cute::array<uint32_t, 5> tma_traversal_strides = {1,1,1,1,1};
for_each(make_seq<num_spatial_modes>{}, [&](auto i) {
tma_traversal_strides[i+1] = static_cast<uint32_t>(get<i>(stride_whd));
});
cute::array<int32_t, num_spatial_modes> tma_lower_corner{};
for_each(make_seq<num_spatial_modes>{}, [&](auto i) {
tma_lower_corner[i] = static_cast<int32_t>(get<i>(lower_corner_whd));
});
cute::array<int32_t, num_spatial_modes> tma_upper_corner{};
for_each(make_seq<num_spatial_modes>{}, [&](auto i) {
tma_upper_corner[i] = static_cast<int32_t>(get<i>(upper_corner_whd));
});
Im2ColTmaDescriptor tma_desc;
#if (__CUDACC_VER_MAJOR__ >= 12)
CUtensorMapDataType tma_format = TMA::to_CUtensorMapDataType<value_type>();
CUtensorMapInterleave tma_interleave = CU_TENSOR_MAP_INTERLEAVE_NONE;
CUtensorMapL2promotion tma_l2Promotion = CU_TENSOR_MAP_L2_PROMOTION_NONE;
CUtensorMapFloatOOBfill tma_oob_fill = CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE;
CUtensorMapSwizzle tma_swizzle = TMA::to_CUtensorMapSwizzle(detail::get_tma_swizzle_bits(smem_swizzle));
CUresult encode_result = cuTensorMapEncodeIm2col(
&tma_desc,
tma_format,
num_total_modes,
gmem_address,
gmem_prob_shape.data(),
gmem_prob_stride.data() + 1, // gmem_prob_stride[0] implicitly sizeof(value_type)
tma_lower_corner.data(),
tma_upper_corner.data(),
range_c,
range_whdn,
tma_traversal_strides.data(),
tma_interleave,
tma_swizzle,
tma_l2Promotion,
tma_oob_fill);
// The extra asserts help indicate the error's cause.
assert(encode_result != CUDA_ERROR_DEINITIALIZED);
assert(encode_result != CUDA_ERROR_NOT_INITIALIZED);
assert(encode_result != CUDA_ERROR_INVALID_CONTEXT);
assert(encode_result != CUDA_ERROR_INVALID_VALUE);
assert(encode_result == CUDA_SUCCESS);
#endif // (__CUDACC_VER_MAJOR__ >= 12)
//
// Calculate gemm shapes and linearized shapes based on tma layout tiling.
//
// Compute [w, h, d, n]
// q/p/z = (w/h/d + (upper_corner_whd - lower_corner_whd - 1)) / stride_whd + 1
auto gemm_mn_ = cute::transform(cute::make_seq<num_spatial_modes>{}, [&](auto i) {
return (shape<i+1>(tensor_cwhdn) + get<i>(upper_corner_whd) - get<i>(lower_corner_whd) - Int<1>{}) / get<i>(stride_whd) + Int<1>{};
});
auto gemm_mn = append(gemm_mn_, shape<num_spatial_modes+1>(tensor_cwhdn));
// Compute [c, s, r, t]
// fprop/wgrad, s/r/t = 1 + (upper_padding_whd - upper_corner_whd) / stride_srt
// wgrad, s/r/t = 1 + (lower_padding_whd - lower_corner_whd) / stride_srt
auto gemm_k_ = cute::transform(cute::make_seq<num_spatial_modes>{}, [&](auto i) {
auto padding_size = conditional_return(get<i>(stride_srt) > Int<0>{},
get<i>(upper_padding_whd) - get<i>(upper_corner_whd),
get<i>(lower_corner_whd) - get<i>(lower_padding_whd));
return Int<1>{} + padding_size / get<i>(stride_srt);
});
auto gemm_k = prepend(gemm_k_, shape<0>(tensor_cwhdn));
// For fprop/dgrad kernel, gemm_shapes is ((q, p, z, n), (c, s, r, t))
// For wgrad kernel, gemm_shapes is ((c, s, r, t), (q, p, z, n))
auto gemm_shapes_common = make_shape(gemm_mn, gemm_k);
auto gemm_shapes = make_shape(
basis_get(stride<0,1>(tma_layout_vt), gemm_shapes_common),
basis_get(stride<0,0>(tma_layout_vt), gemm_shapes_common));
// For fprop/dgrad kernel, linearized shapes is (whdn, (c, s, r, t))
// For wgrad kernel linearized shapes is ((c, s, r, t), whdn)
auto linear_shapes_common = make_shape(size(gemm_mn), gemm_k);
auto linear_shapes = make_shape(
basis_get(stride<0,1>(tma_layout_vt), linear_shapes_common),
basis_get(stride<0,0>(tma_layout_vt), linear_shapes_common));
//
// Calculate gmem basis stride based on tma layout tiling.
//
auto tma_basis_scale = make_shape(Int<1>{}, stride_whd, Int<1>{}, stride_srt);
auto tma_basis = elem_scale(tma_basis_scale, make_basis_like(tma_basis_scale));
auto gbasis_strides_common = make_stride(
append(get<1>(tma_basis), get<2>(tma_basis)),
prepend(get<3>(tma_basis), get<0>(tma_basis))); // ((w,h,d,n),(c,s,r,t))
auto gbasis_strides = make_stride(
basis_get(stride<0,1>(tma_layout_vt), gbasis_strides_common),
basis_get(stride<0,0>(tma_layout_vt), gbasis_strides_common));
//
// Create tma tensor
//
auto lower_corner = make_arithmetic_tuple(Int<0>{}, lower_corner_whd, Int<0>{}, lower_srt);
auto tensor_multimode = make_tensor(ArithmeticTupleIterator(lower_corner), gemm_shapes, gbasis_strides);
auto tensor_linear = make_identity_tensor(linear_shapes);
auto tma_tensor = make_tensor(tensor_multimode.data(), composition(
tensor_multimode.layout(),
tensor_linear(Int<0>{}),
tensor_linear.layout()));
return cute::make_tuple(tma_desc, tma_tensor);
}
template <class CopyOp,
class GEngine, class GLayout,
class SLayout,
class VShape, class VStride,
class LowerCornerStride,
class UpperCornerStride,
class LowerPaddingStride,
class UpperPaddingStride,
class TraversalStride,
class LowerSRTStride,
class DilationStride>
CUTE_HOST_RTC
auto
make_tma_atom_im2col(CopyOp,
Tensor<GEngine,GLayout> const& gtensor, // Full GMEM Tensor: ((w, h, d, n), c)
SLayout const& slayout, // CTA Tile of SMEM, potentially swizzled
int32_t const& num_multicast, // The number of CTAs involved in multicasting
Layout<VShape,VStride> const& cta_v_map, // V: CTA val idx -> gmem mode
LowerCornerStride const& lower_corner_whd,
UpperCornerStride const& upper_corner_whd,
LowerPaddingStride const& lower_padding_whd,
UpperPaddingStride const& upper_padding_whd,
TraversalStride const& stride_whd, // traversal stride
LowerSRTStride const& lower_srt,
DilationStride const& stride_srt) // dilation
{
//
// TMA parameter checking
//
CUTE_STATIC_ASSERT_V(product_each(shape(slayout)) == product_each(shape(cta_v_map)),
"TMA requires CTA_Tile and SLayout top-level shape equivalence.");
//
// TMA slayout manipulation
//
// Invert the smem to get the largest contiguous vector in the smem layout
auto inv_smem_layout = right_inverse(get_nonswizzle_portion(slayout));
// trunc_smem_idx -> trunc_smem_coord
// Map from smem idx to a gmem mode
auto sidx_to_gmode = coalesce(composition(cta_v_map, inv_smem_layout));
#if 0
print("g_layout : "); print(gtensor.layout()); print("\n");
print("s_layout : "); print(slayout); print("\n");
print("cta_t_map : "); print(cta_t_map); print("\n");
print("cta_v_map : "); print(cta_v_map); print("\n");
print("inv_smem : "); print(inv_smem_layout); print("\n");
print("sidx_to_gmode : "); print(sidx_to_gmode); print("\n");
#endif
//
// TMA gtensor manipulation
//
// Generate a TupleBasis for the gtensor
auto glayout_basis = make_identity_layout(product_each(shape(gtensor)));
// Tile the modes of gtensor with the truncated cta_v_map o inv_smem_layout_trunc
auto tma_layout_full = flatten(composition(glayout_basis, sidx_to_gmode));
// Truncate any incompatibilities -- no starting in the middle of gmodes
auto smem_rank = find_if(stride(tma_layout_full), [](auto e) {
[[maybe_unused]] auto v = basis_value(e);
return not is_constant<1,decltype(v)>{};
});
static_assert(smem_rank >= 2, "IM2COL expects at least 2 modes of the smem to vectorize with gmem.");
// IM2COL uses a maximum of 2 modes
constexpr int smem_tma_rank = cute::min(int(smem_rank), 2);
// Keep only the static-1 basis modes into gmem
auto tma_layout_trunc = take<0,smem_tma_rank>(tma_layout_full);
// Split according to the portion each multicast CTA will be responsible for
auto tma_layout_vt = logical_divide(tma_layout_trunc, shape_div(size(tma_layout_trunc), num_multicast));
#if 0
print("glayout_basis : "); print(glayout_basis); print("\n");
print("tma_layout_full : "); print(tma_layout_full); print("\n");
print("tma_layout_trunc: "); print(tma_layout_trunc); print("\n");
print("tma_layout_vt : "); print(tma_layout_vt); print("\n");
#endif
auto range_c = size<0,0>(tma_layout_vt);
auto range_whdn = size<0,1>(tma_layout_vt);
Tensor gtensor_cwhdn = make_tensor(gtensor.data(),
flatten(make_layout(basis_get(stride<0,0>(tma_layout_vt), gtensor.layout()),
basis_get(stride<0,1>(tma_layout_vt), gtensor.layout()))));
auto [tma_desc, tma_tensor] = make_im2col_tma_copy_desc(
gtensor_cwhdn,
range_c,
range_whdn,
detail::get_swizzle_portion(slayout),
tma_layout_vt,
lower_corner_whd,
upper_corner_whd,
lower_padding_whd,
upper_padding_whd,
stride_whd,
lower_srt,
stride_srt);
//
// Construct the Copy_Traits
//
using T = typename GEngine::value_type;
constexpr int num_bits_per_tma = decltype(size(tma_layout_trunc))::value * sizeof(T) * 8;
using Traits = Copy_Traits<CopyOp, cute::C<num_bits_per_tma>, decltype(tma_tensor)>;
using Atom = Copy_Atom<Traits, typename GEngine::value_type>;
#if 0
print("num_bits : "); print(num_bits_per_tma); print("\n");
#endif
Traits tma_traits{tma_desc, tma_tensor};
// Return the Copy_Atom
return Atom{tma_traits};
}
/// Make a TiledCopy for im2col TMA load.
///
/// @param copy_op The copy implementation: either
/// SM90_TMA_LOAD_IM2COL or SM90_TMA_LOAD_IM2COL_MULTICAST.
///
/// @param tensor_cwhdn The global tensor to use for im2col TMA loads.
/// For Fprop convolutions, this is the activation tensor. This is
/// the "original tensor that points to global memory, not the
/// coordinate (im2col-transformed) tensor.
///
/// @param slayout Layout of shared memory tile.
///
/// @param stride_whd The traversal strides convolution
/// parameter.
///
/// @return TiledCopy specialization for im2col TMA loads.
template <class CopyOp,
class GEngine, class GLayout,
class SLayout,
class TShape, class TStride,
class VShape, class VStride,
class LowerCornerStride,
class UpperCornerStride,
class LowerPaddingStride,
class UpperPaddingStride,
class TraversalStride,
class LowerSRTStride,
class DilationStride>
CUTE_HOST_RTC
auto
make_tma_copy_im2col(CopyOp const& copy_op,
Tensor<GEngine,GLayout> const& gtensor,
SLayout const& slayout,
Layout<TShape,TStride> const& cta_t_map, // CTA tid -> logical TMA tid
Layout<VShape,VStride> const& cta_v_map, // CTA vid -> gmem coord
LowerCornerStride const& lower_corner_whd,
UpperCornerStride const& upper_corner_whd,
LowerPaddingStride const& lower_padding_whd,
UpperPaddingStride const& upper_padding_whd,
TraversalStride const& stride_whd, // traversal stride
LowerSRTStride const& lower_srt,
DilationStride const& stride_srt) // dilation
{
//
// TMA parameter checking
//
CUTE_STATIC_ASSERT_V(size(slayout) % cosize(cta_t_map) == Int<0>{},
"Number of active CTAs in TMA must divide domain size of slayout.");
Copy_Atom atom = make_tma_atom_im2col(copy_op, gtensor, slayout, cosize(cta_t_map), cta_v_map,
lower_corner_whd, upper_corner_whd, lower_padding_whd,
upper_padding_whd, stride_whd, lower_srt, stride_srt);
//
// Construct the TiledCopy
//
auto cta_tiler = product_each(shape(cta_v_map));
auto num_elems_per_tma = size<1>(typename decltype(atom)::RefLayout{}) / static_value<sizeof_bits<typename GEngine::value_type>>();
// smem idx -> smem coord
auto inv_smem_layout = right_inverse(get_nonswizzle_portion(slayout));
// CTA V -> smem_coord
auto layout_v = composition(inv_smem_layout, num_elems_per_tma);
// Scale that up to cover all of the smem_coords
auto layout_V = tile_to_shape(make_layout(layout_v), size(cta_v_map));
// CTA T -> smem idx
auto layout_t = make_layout(cosize(cta_t_map), shape_div(num_elems_per_tma, cosize(cta_t_map)));
// CTA TID -> smem coord
auto layout_T = composition(inv_smem_layout, composition(layout_t, cta_t_map));
// Combine with the T mapping
[[maybe_unused]] auto layout_TV = make_layout(layout_T, layout_V);
#if 0
print("cta_tiler : "); print(cta_tiler); print("\n");
print("layout_v : "); print(layout_v); print("\n");
print("layout_V : "); print(layout_V); print("\n");
print("layout_t : "); print(layout_t); print("\n");
print("layout_T : "); print(layout_T); print("\n");
print("layout_TV : "); print(layout_TV); print("\n");
#endif
return TiledCopy<decltype(atom), decltype(layout_TV), decltype(cta_tiler)>{atom};
}
/// Make a TiledCopy for im2col TMA with no offsets.
/// E.g. im2col TMA load for C and im2col TMA store for D.
template <class CopyOp,
class GEngine, class GLayout,
class SLayout,
class TShape, class TStride,
class VShape, class VStride>
CUTE_HOST_RTC
auto
make_tma_copy_im2col(CopyOp const& copy_op,
Tensor<GEngine,GLayout> const& gtensor,
SLayout const& slayout,
Layout<TShape,TStride> const& cta_t_map, // CTA tid -> logical TMA tid
Layout<VShape,VStride> const& cta_v_map) // CTA vid -> gmem coord
{
constexpr int num_spatial_modes = rank<0>(GLayout{}) - 1;
return make_tma_copy_im2col(copy_op, gtensor, slayout, cta_t_map, cta_v_map,
append<num_spatial_modes>(Stride<_0>{}, Int<0>{}), // lower_corner_whd
append<num_spatial_modes>(Stride<_0>{}, Int<0>{}), // upper_corner_whd
append<num_spatial_modes>(Stride<_0>{}, Int<0>{}), // lower_padding_whd
append<num_spatial_modes>(Stride<_0>{}, Int<0>{}), // upper_padding_whd
append<num_spatial_modes>(Stride<_1>{}, Int<1>{}), // stride_whd
append<num_spatial_modes>(Stride<_0>{}, Int<0>{}), // lower_srt
append<num_spatial_modes>(Stride<_1>{}, Int<1>{})); // stride_srt
}
} // namespace detail
template <class CopyOp,
class Engine0, class Layout0,
class SLayout,
class CTATiler,
class MulticastSize,
class LowerCornerStride,
class UpperCornerStride,
class LowerPaddingStride,
class UpperPaddingStride,
class TraversalStride,
class LowerSRTStride,
class DilationStride>
CUTE_HOST_RTC
auto
make_im2col_tma_copy(CopyOp const& copy_op,
Tensor<Engine0, Layout0> const& tensor_cwhdn,
SLayout const& slayout,
CTATiler const& cta_tiler,
MulticastSize const& multicast_size,
LowerCornerStride const& lower_corner_whd,
UpperCornerStride const& upper_corner_whd,
LowerPaddingStride const& lower_padding_whd,
UpperPaddingStride const& upper_padding_whd,
TraversalStride const& stride_whd,
LowerSRTStride const& lower_srt,
DilationStride const& stride_srt)
{
auto cta_v_tile = make_identity_layout(product_each(shape(tensor_cwhdn))).compose(cta_tiler);
auto cta_t_tile = make_layout(multicast_size);
return detail::make_tma_copy_im2col(copy_op, tensor_cwhdn,
slayout, cta_t_tile, cta_v_tile,
lower_corner_whd, upper_corner_whd, lower_padding_whd, upper_padding_whd, stride_whd, lower_srt, stride_srt);
}
// Explicit default for multicast_size
template <class CopyOp,
class Engine0, class Layout0,
class SLayout,
class CTATiler,
class LowerCornerStride,
class UpperCornerStride,
class LowerPaddingStride,
class UpperPaddingStride,
class TraversalStride,
class LowerSRTStride,
class DilationStride>
CUTE_HOST_RTC
auto
make_im2col_tma_copy(CopyOp const& copy_op,
Tensor<Engine0, Layout0> const& tensor_cwhdn,
SLayout const& slayout,
CTATiler const& cta_tiler,
LowerCornerStride const& lower_corner_whd,
UpperCornerStride const& upper_corner_whd,
LowerPaddingStride const& lower_padding_whd,
UpperPaddingStride const& upper_padding_whd,
TraversalStride const& stride_whd,
LowerSRTStride const& lower_srt,
DilationStride const& stride_srt)
{
return make_im2col_tma_copy(copy_op, tensor_cwhdn, slayout, cta_tiler, Int<1>{},
lower_corner_whd, upper_corner_whd, lower_padding_whd, upper_padding_whd, stride_whd, lower_srt, stride_srt);
}
// Explicit default for cta_tiler and multicast_size
template <class CopyOp,
class Engine0, class Layout0,
class SLayout,
class LowerCornerStride,
class UpperCornerStride,
class LowerPaddingStride,
class UpperPaddingStride,
class TraversalStride,
class LowerSRTStride,
class DilationStride>
CUTE_HOST_RTC
auto
make_im2col_tma_copy(CopyOp const& copy_op,
Tensor<Engine0, Layout0> const& tensor_cwhdn,
SLayout const& slayout,
LowerCornerStride const& lower_corner_whd,
UpperCornerStride const& upper_corner_whd,
LowerPaddingStride const& lower_padding_whd,
UpperPaddingStride const& upper_padding_whd,
TraversalStride const& stride_whd,
LowerSRTStride const& lower_srt,
DilationStride const& stride_srt)
{
return make_im2col_tma_copy(copy_op, tensor_cwhdn, slayout, product_each(shape(slayout)), Int<1>{},
lower_corner_whd, upper_corner_whd, lower_padding_whd, upper_padding_whd, stride_whd, lower_srt, stride_srt);
}
// No offsets copy.
template <class CopyOp,
class Engine0, class Layout0,
class SLayout,
class CTATiler,
class MulticastSize>
CUTE_HOST_RTC
auto
make_im2col_tma_copy(CopyOp const& copy_op,
Tensor<Engine0, Layout0> const& tensor_cwhdn,
SLayout const& slayout,
CTATiler const& cta_tiler,
MulticastSize const& multicast_size)
{
auto cta_v_tile = make_identity_layout(product_each(shape(tensor_cwhdn))).compose(cta_tiler);
auto cta_t_tile = make_layout(multicast_size);
return detail::make_tma_copy_im2col(copy_op, tensor_cwhdn, slayout, cta_t_tile, cta_v_tile);
}
// Explicit default for multicast_size
template <class CopyOp,
class Engine0, class Layout0,
class SLayout,
class CTATiler>
CUTE_HOST_RTC
auto
make_im2col_tma_copy(CopyOp const& copy_op,
Tensor<Engine0, Layout0> const& tensor_cwhdn,
SLayout const& slayout,
CTATiler const& cta_tiler)
{
return make_im2col_tma_copy(copy_op, tensor_cwhdn, slayout, cta_tiler, Int<1>{});
}
// Explicit default for cta_tiler and multicast_size
template <class CopyOp,
class Engine0, class Layout0,
class SLayout>
CUTE_HOST_RTC
auto
make_im2col_tma_copy(CopyOp const& copy_op,
Tensor<Engine0, Layout0> const& tensor_cwhdn,
SLayout const& slayout)
{
return make_im2col_tma_copy(copy_op, tensor_cwhdn, slayout, product_each(shape(slayout)), Int<1>{});
}
} // namespace cute