-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrunmmc.py
233 lines (201 loc) · 7.73 KB
/
runmmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""RunMMC - launch mesh-based Monte Carlo (MMC) simulations using domain configured in Blender
* Authors: (c) 2021-2022 Qianqian Fang <q.fang at neu.edu>
(c) 2021 Yuxuan Zhang <zhang.yuxuan1 at northeastern.edu>
* License: GNU General Public License V3 or later (GPLv3)
* Website: http://mcx.space/bp
To cite this work, please use the below information
@article{BlenderPhotonics2022,
author = {Yuxuan Zhang and Qianqian Fang},
title = {{BlenderPhotonics: an integrated open-source software environment for three-dimensional meshing and photon simulations in complex tissues}},
volume = {27},
journal = {Journal of Biomedical Optics},
number = {8},
publisher = {SPIE},
pages = {1 -- 23},
year = {2022},
doi = {10.1117/1.JBO.27.8.083014},
URL = {https://doi.org/10.1117/1.JBO.27.8.083014}
}
"""
import bpy
import numpy as np
import jdata as jd
import os
from .utils import *
g_nphoton = 10000
g_tend = 5e-9
g_tstep = 5e-9
g_method = "elem"
g_outputtype = "flux"
g_isreflect = True
g_isnormalized = True
g_basisorder = 1
g_debuglevel = "TP"
g_gpuid = "1"
class runmmc(bpy.types.Operator):
bl_label = "Run MMC photon simulation"
bl_description = "Run mesh-based Monte Carlo simulation"
bl_idname = "blenderphotonics.runmmc"
# creat a interface to set uesrs' model parameter.
bl_options = {"REGISTER", "UNDO"}
nphoton: bpy.props.FloatProperty(default=g_nphoton, name="Photon number")
tend: bpy.props.FloatProperty(default=g_tend, name="Time gate width (s)")
tstep: bpy.props.FloatProperty(default=g_tstep, name="Time gate step (s)")
isreflect: bpy.props.BoolProperty(default=g_isreflect, name="Do reflection")
isnormalized: bpy.props.BoolProperty(
default=g_isnormalized, name="Normalize output"
)
basisorder: bpy.props.IntProperty(
default=g_basisorder, step=1, name="Basis order (0 or 1)"
)
method: bpy.props.EnumProperty(
default=g_method,
name="Raytracer (use elem)",
items=[
(
"elem",
"elem: Saving weight on elements",
"Saving weight on elements",
),
("grid", "grid: Dual-grid MMC (not supported)", "Dual-grid MMC"),
],
)
outputtype: bpy.props.EnumProperty(
default=g_outputtype,
name="Output quantity",
items=[
("flux", "flux: fluence rate", "fluence rate (J/mm^2/s)"),
("fluence", "fluence: fluence (J/mm^2)", "fluence in J/mm^2"),
(
"energy",
"energy: energy density J/mm^3",
"energy density J/mm^3",
),
],
)
gpuid: bpy.props.StringProperty(default=g_gpuid, name="GPU ID (01 mask,-1=CPU)")
debuglevel: bpy.props.StringProperty(
default=g_debuglevel, name="Debug flag [MCBWDIOXATRPE]"
)
def preparemmc(self):
## save optical parameters and source source information
parameters = [] # mu_a, mu_s, n, g
cfg = [] # location, direction, photon number, Type,
for obj in bpy.data.objects[0:-1]:
if not ("mua" in obj):
continue
parameters.append([obj["mua"], obj["mus"], obj["g"], obj["n"]])
obj = bpy.data.objects["source"]
location = np.array(obj.location).tolist()
bpy.context.object.rotation_mode = "QUATERNION"
direction = np.array(bpy.context.object.rotation_quaternion).tolist()
srcparam1 = [val for val in obj["srcparam1"]]
srcparam2 = [val for val in obj["srcparam2"]]
cfg = {
"srctype": obj["srctype"],
"srcpos": location,
"srcdir": direction,
"srcparam1": srcparam1,
"srcparam2": srcparam2,
"nphoton": self.nphoton,
"srctype": obj["srctype"],
"unitinmm": obj["unitinmm"],
"tend": self.tend,
"tstep": self.tstep,
"isreflect": self.isreflect,
"isnormalized": self.isnormalized,
"method": self.method,
"outputtype": self.outputtype,
"basisorder": self.basisorder,
"debuglevel": self.debuglevel,
"gpuid": self.gpuid,
}
print(obj["srctype"])
outputdir = GetBPWorkFolder()
if not os.path.isdir(outputdir):
os.makedirs(outputdir)
# Save MMC information
jd.save(
{"prop": parameters, "cfg": cfg},
os.path.join(outputdir, "mmcinfo.json"),
)
# run MMC
try:
if bpy.context.scene.blender_photonics.backend == "octave":
import oct2py as op
oc = op.Oct2Py()
else:
import matlab.engine as op
oc = op.start_matlab()
except ImportError:
raise ImportError(
"To run this feature, you must install the oct2py or matlab.engine Python modulem first, based on your choice of the backend"
)
oc.addpath(
oc.genpath(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "script")
)
)
oc.feval(
"blendermmc",
os.path.join(outputdir, "mmcinfo.json"),
os.path.join(outputdir, "meshdata.mat"),
nargout=0,
)
# remove all object and import all region as one object
bpy.ops.object.select_all(action="SELECT")
bpy.ops.object.delete()
outputmesh = jd.load(os.path.join(outputdir, "volumemesh.jmsh"))
outputmesh = JMeshFallback(outputmesh)
if not isinstance(outputmesh["MeshTri3"], np.ndarray):
outputmesh["MeshTri3"] = np.asarray(outputmesh["MeshTri3"], dtype=np.uint32)
outputmesh["MeshTri3"] -= 1
AddMeshFromNodeFace(
outputmesh["MeshVertex3"],
outputmesh["MeshTri3"].tolist(),
"Iso2Mesh",
)
# add color to blender model
obj = bpy.data.objects["Iso2Mesh"]
mmcoutput = jd.load(os.path.join(outputdir, "mmcoutput.json"))
mmcoutput["logflux"] = np.asarray(mmcoutput["logflux"], dtype="float32")
def normalize(x, max, min):
x = (x - min) / (max - min)
return x
colorbit = 10
colorkind = 2**colorbit - 1
weight_data = normalize(
mmcoutput["logflux"],
np.max(mmcoutput["logflux"]),
np.min(mmcoutput["logflux"]),
)
weight_data_test = np.rint(weight_data * (colorkind))
new_vertex_group = obj.vertex_groups.new(name="weight")
for i in range(colorkind + 1):
ind = np.array(np.where(weight_data_test == i)).tolist()
new_vertex_group.add(ind[0], i / colorkind, "ADD")
bpy.context.view_layer.objects.active = obj
bpy.ops.object.mode_set(mode="WEIGHT_PAINT")
bpy.context.space_data.shading.type = "SOLID"
print(
"Finshed!, Please change intereaction mode to Weight Paint to see result!"
)
print(
"""If you prefer a perspective effect,please go to edit mode and make sure shading 'Vertex Group Weight' is on."""
)
def execute(self, context):
print("Begin to run MMC source transport simulation ...")
self.preparemmc()
return {"FINISHED"}
def invoke(self, context, event):
return context.window_manager.invoke_props_dialog(self)
#
# Dialog to set meshing properties
#
class setmmcprop(bpy.types.Panel):
bl_label = "MMC Simulation Setting"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
def draw(self, context):
global g_nphoton, g_tend, g_tstep, g_method, g_outputtype, g_isreflect, g_isnormalized, g_basisorder, g_debuglevel, g_gpuid
self.layout.operator("object.dialog_operator")