-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnonlinear_coreg.py
131 lines (108 loc) · 7.01 KB
/
nonlinear_coreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from nipype.pipeline.engine import Node, Workflow
import nipype.interfaces.utility as util
import nipype.interfaces.ants as ants
import nipype.interfaces.fsl as fsl
import nipype.interfaces.freesurfer as fs
def create_nonlinear_pipeline(name='nonlinear'):
# workflow
nonlinear=Workflow(name='nonlinear')
# inputnode
inputnode=Node(util.IdentityInterface(fields=['t1_highres',
'epi2highres_lin',
'epi2highres_lin_itk',
'fov_mask',
'brain_mask',
'wmcsf_mask',
'highres2lowres_itk'
]),
name='inputnode')
# outputnode
outputnode=Node(util.IdentityInterface(fields=['epi2highres_warp',
'epi2highres_invwarp',
'epi2highres_nonlin',
'brainmask_highres',
'wmcsfmask_highres'
]),
name='outputnode')
# project brainmask and wmcsf mask from lowres to highres mp2rage space
brainmask = Node(ants.ApplyTransforms(dimension=3,
invert_transform_flags=[True],
interpolation = 'NearestNeighbor'),
name='brainmask')
wmcsf_mask = Node(ants.ApplyTransforms(dimension=3,
invert_transform_flags=[True],
interpolation = 'NearestNeighbor'),
name='wmcsf_mask')
# mask t1
#dilate brainmask
dil_brainmask = Node(fs.Binarize(min=0.5,
out_type = 'nii.gz',
dilate=15),
name='dil_brainmask')
mask_epi = Node(fsl.ApplyMask(out_file='epi2highres_lin_masked.nii.gz'),
name='mask_epi')
nonlinear.connect([(inputnode, brainmask, [('brain_mask', 'input_image'),
('t1_highres', 'reference_image'),
('highres2lowres_itk', 'transforms')]),
(brainmask, outputnode, [('output_image', 'brainmask_highres')]),
(inputnode, wmcsf_mask, [('wmcsf_mask', 'input_image'),
('t1_highres', 'reference_image'),
('highres2lowres_itk', 'transforms')]),
(wmcsf_mask, outputnode, [('output_image', 'wmcsfmask_highres')]),
(brainmask, dil_brainmask, [('output_image', 'in_file')]),
(dil_brainmask, mask_epi, [('binary_file', 'mask_file')]),
(inputnode, mask_epi, [('epi2highres_lin', 'in_file')])
])
# transform fov mask, dilate and apply to t1
transform_fov = Node(ants.ApplyTransforms(dimension=3,
output_image='fov_mask_highres.nii.gz',
interpolation = 'NearestNeighbor'),
'transform_fov')
dilate_fov = Node(fs.Binarize(min=0.5,
dilate=5,
binary_file='fov_mask_highres_dil.nii.gz'),
name='dilate_fov')
#mask t1 twice
mask_t1_1 = Node(fsl.ApplyMask(out_file='t1_brain_masked.nii.gz'),
name='mask_t1_1')
mask_t1_2 = Node(fsl.ApplyMask(out_file='t1_brain_fov_masked.nii.gz'),
name='mask_t1_2')
nonlinear.connect([(inputnode, transform_fov, [('fov_mask', 'input_image'),
('t1_highres', 'reference_image'),
('epi2highres_lin_itk', 'transforms')]),
(transform_fov, dilate_fov, [('output_image', 'in_file')]),
(brainmask, mask_t1_1, [('output_image', 'mask_file')]),
(inputnode, mask_t1_1, [('t1_highres', 'in_file')]),
(dilate_fov, mask_t1_2, [('binary_file', 'mask_file')]),
(mask_t1_1, mask_t1_2, [('out_file', 'in_file')]),
])
# normalization with ants
antsreg = Node(interface = ants.registration.Registration(dimension = 3,
metric = ['CC'],
metric_weight = [1.0],
radius_or_number_of_bins = [4],
sampling_strategy = ['None'],
transforms = ['SyN'],
args = '-g 0.1x1x0.1',
transform_parameters = [(0.10,3,0)],
number_of_iterations = [[50,20,10]],
convergence_threshold = [1e-06],
convergence_window_size = [10],
shrink_factors = [[4,2,1]],
smoothing_sigmas = [[2,1,0]],
sigma_units = ['vox'],
use_estimate_learning_rate_once = [True],
use_histogram_matching = [True],
collapse_output_transforms=True,
output_inverse_warped_image = True,
output_warped_image = True,
interpolation = 'BSpline'),
name = 'antsreg')
antsreg.plugin_args={'override_specs': 'request_memory = 40000'}
nonlinear.connect([(mask_epi, antsreg, [('out_file', 'moving_image')]),
(mask_t1_2, antsreg, [('out_file', 'fixed_image')]),
(antsreg, outputnode, [('reverse_transforms', 'epi2highres_invwarp'),
('forward_transforms', 'epi2highres_warp'),
('warped_image', 'epi2highres_nonlin')])
])
return nonlinear