-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelperfunc.py
624 lines (503 loc) · 17.6 KB
/
helperfunc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import numpy as np
import nibabel as nib
import nilearn.plotting
import matplotlib.pyplot as plt
import mayavi
from mayavi import mlab
import ptitprince as pt
import seaborn as sn
import pandas as pd
import numba
from utils_hcpClass import *
import networkx as nx
import gdist
import surfdist as sd
import surfdist.analysis
from sklearn.cluster import KMeans
def recort(X,fill,dims):
out=np.zeros(dims)
out[fill]=X
return out
def recort_bin(X,fill,dims):
out=np.zeros(dims)
mini=np.zeros(len(fill))
mini[X]=1
out[fill]=mini
return out
def binit(X):
pct=np.percentile(X,[10,20,30,40,50,60,70,80,90])
pct=np.digitize(X,pct)
return pct+1
def binit20(X):
pct=np.percentile(X,[20,40,60,80])
pct=np.digitize(X,pct)
return pct+1
def get_zoneVerts(WS):
zoneverts={}
for i in range(1,np.max(WS)):
zoneverts.update({f'zone{i}':np.where(WS==i)[0]})
return zoneverts
def oh_mayavi(surf,stat,cmap,clrbar=True):
"""surface, statmap, colormap"""
##### parse the gifti
anat=nib.load(surf)
coords=anat.darrays[0].data
x=coords[:,0]
y=coords[:,1]
z=coords[:,2]
triangles=anat.darrays[1].data
##### if subcortical mask provided use it
# print('masking out subcortex')
# sub_cort=nilearn.surface.load_surf_data(args[0])
# stat[sub_cort]=float('NaN')
### start mayavi
maya=mlab.triangular_mesh(x,y,z,triangles,scalars=stat,colormap=cmap)
mlab.view(azimuth=0, elevation=-90)
f = mlab.gcf()
cam = f.scene.camera
cam.zoom(1.)
if clrbar==True:
cb=mlab.colorbar(orientation='vertical', nb_labels=3,label_fmt='%.2f')
cb.label_text_property.color =(0,0,0)
else:
pass
mlab.draw()
img1=mlab.screenshot(figure=maya,mode='rgba',antialiased=True)
mlab.view(azimuth=0, elevation=90)
mlab.figure(bgcolor=(0, 0, 0))
### clear figure
mayavi.mlab.clf()
f = mlab.gcf()
cam = f.scene.camera
cam.zoom(1.1)
mlab.draw()
img2=mlab.screenshot(figure=maya,mode='rgba',antialiased=True)
### clear figure
mayavi.mlab.clf()
mlab.clf()
mlab.close()
return img1,img2
def plot_srfs(a,b,c,d,title=False):
figure=plt.figure(figsize=(6, 8), dpi=180)
plt.subplot(2,2,1)
plt.imshow(a)
plt.axis('off')
plt.subplot(2,2,2)
plt.imshow(b)
plt.axis('off')
mlab.clf()
plt.subplot(2,2,3)
plt.imshow(c)
plt.axis('off')
plt.subplot(2,2,4)
plt.imshow(d)
plt.axis('off')
plt.subplots_adjust(left=0.1,
bottom=0.5,
top=0.9,
wspace=0,
hspace=0)
if title !=False:
figure.suptitle(title, fontsize=16,y=0.5)
plt.tight_layout()
# plt.savefig(f'{file}.png',bbox_inches='tight',facecolor='w')
# plt.close()
def SpatialNeighbours(coords,faces):
#### gives the same output as mris_convert -v but directly into a python structure
neighbours={}
for i in range(len(coords)):
a=np.unique(faces[np.where(faces==i)[0]])
a=a[a!=i]
neighbours[i]=a.tolist()
return neighbours
def Zscore(x):
Z=(x-np.mean(x))/np.std(x)
return Z
def dice_it(A,B):
num=2*(len(np.intersect1d(A,B)))
den=len(A)+len(B)
if den ==0:
return np.nan
else:
return num/den
def jaccard_it(A,B):
num=len(np.intersect1d(A,B))
den=len(np.union1d(A,B))
if den ==0:
return 0
else:
return num/den
def gradientOrientation(grad,hemi,aparc):
"""Determine the orientation of the gradients, and also return whether valid for continued study or not"""
grad=grad #nib.load(grad).agg_data()
if hemi=='left':
labels=nib.load(aparc).agg_data()
# print('getting gradient orientation from left hemisphere')
else:
labels=nib.load(aparc).agg_data()
# print('getting gradient orientation from right hemisphere')
calc=np.where(labels==45)[0]
ctr=np.where(labels==46)[0]
if np.sum(grad[calc])<0 and np.sum(grad[ctr])<0:
# print('Canonical Orientation DMN at apex')
return grad,True
elif np.sum(grad[calc])<0 and np.sum(grad[ctr])>0:
# print(f'REMOVE {subj} FROM STUDY')
return grad,False
elif np.sum(grad[calc])>0 and np.sum(grad[ctr])<0:
# print(f'REMOVE {subj} FROM STUDY')
return grad,False
else:
# print('flipping gradient orientation for peak detection')
return grad *-1,True
##### flatten a list
def flatten(l):
return [item for sublist in l for item in sublist]
def prep_plotting(subj,kernel,sim='dice',pca=False):
thr=[50,55,60,65,70,75,80,85,90,95]
ctx_metric=[]
zone_metricsL=[]
zone_metricsR=[]
if pca == False:
gr=hcp_subj(subj,kernel)
if gr.Lgradses1[1] == False or gr.Lgradses2[1] == False or gr.Rgradses1[1] ==False or gr.Rgradses2[1] ==False:
# print(f'subject {gr.subj} Diffusion Mapping is not valid at smoothing kernel {kernel} ')
return [gr.subj,kernel],[gr.subj,kernel],[gr.subj,kernel]
else:
if sim=='dice':
for t in thr:
ctx_metric.append(gr.dice_Ses12(t))
zone_metricsL.append(gr.ZoneDice_Ses12(t)[0])
zone_metricsR.append(gr.ZoneDice_Ses12(t)[1])
else:
for t in thr:
gr.Jaccard_Ses12(t)
ctx_metric.append(gr.Jaccard_Ses12(t))
zone_metricsL.append(gr.ZoneDice_Ses12(t)[0])
zone_metricsR.append(gr.ZoneDice_Ses12(t)[1])
else:
gr=hcp_subj(subj,kernel,pca=True)
if gr.Lgradses1[1] == False or gr.Lgradses2[1] == False or gr.Rgradses1[1] ==False or gr.Rgradses2[1] ==False:
# print(f'subject {gr.subj} PCA is not valid at smoothing kernel {kernel} ')
return [gr.subj,kernel],[gr.subj,kernel],[gr.subj,kernel]
else:
if sim=='dice':
for t in thr:
ctx_metric.append(gr.dice_Ses12(t))
zone_metricsL.append(gr.ZoneDice_Ses12(t)[0])
zone_metricsR.append(gr.ZoneDice_Ses12(t)[1])
else:
for t in thr:
gr.Jaccard_Ses12(t)
ctx_metric.append(gr.Jaccard_Ses12(t))
zone_metricsL.append(gr.ZoneDice_Ses12(t)[0])
zone_metricsR.append(gr.ZoneDice_Ses12(t)[1])
return np.vstack(ctx_metric),np.vstack(zone_metricsL),np.vstack(zone_metricsR)
def prep_plotsXkernel(kernel,subjects,pca=False,corr=True):
### set up outputs
Lhemi=[]
Rhemi=[]
LlatPar=[]
LTmp=[]
LmedPar=[]
RlatPar=[]
RTmp=[]
RmedPar=[]
nogo=[]
### loop through subjjects for specified kernel
for subj in subjects:
a,b,c=prep_plotting(subj,kernel,pca=pca)
if len(a)>2:
Lhemi.append(a[:,0])
Rhemi.append(a[:,1])
LlatPar.append(b[:,0])
LTmp.append(b[:,1])
LmedPar.append(b[:,2])
RlatPar.append(c[:,0])
RTmp.append(c[:,1])
RmedPar.append(c[:,2])
else:
nogo.append(a[0])
Lhemi=np.vstack(Lhemi)
Rhemi=np.vstack(Rhemi)
LlatPar=np.vstack(LlatPar)
LTmp=np.vstack(LTmp)
LmedPar=np.vstack(LmedPar)
RlatPar=np.vstack(LlatPar)
RTmp=np.vstack(LTmp)
RmedPar=np.vstack(LmedPar)
if corr == True:
corr=(len(Lhemi)/len(subjects))
return (Lhemi*corr),(Rhemi*corr),(LlatPar*corr),(LTmp*corr),(LmedPar*corr),(RlatPar*corr),(RTmp*corr),(RmedPar*corr),nogo
elif corr == False:
return Lhemi,Rhemi,LlatPar,LTmp,LmedPar,RlatPar,RTmp,RmedPar,nogo
def plot_itHue(k,rgn,legend=False,corr=True):
"""where k = kernel of 2,4,6,8,10 and rgn indexes the output of prep"""
if corr==True:
a=prep_plotsXkernel(k)
b=prep_plotsXkernel(k,pca=True)
elif corr==False:
a=prep_plotsXkernel(k,corr=False)
b=prep_plotsXkernel(k,pca=True,corr=False)
a=pd.DataFrame.from_dict(dict(zip(thr,a[rgn].T)))
a['Method']='Diffusion Mapping'
b=pd.DataFrame.from_dict(dict(zip(thr,b[rgn].T)))
b['Method']='PCA'
# print(f'Dmaps has {len(a)} subjects')
# print(f'PCA has {len(b)} subjects')
# print(f'smoothing kernel is {k}')
df=pd.concat([a,b])
df=df.melt(id_vars=['Method'],value_vars=[50,55,60,65,70,75,80,85,90,95])
# f, ax = plt.figure()
ax=sn.boxplot(data=df,x='value',y='variable',hue='Method',orient='h')
ax=sn.stripplot(data=df,x='value',y='variable',hue='Method',orient='h',size=3,dodge=True,palette=pal)
plt.xlim([0,1])
ax.set(ylabel = "Gradient Threshold")
plt.xlabel(f"{k}mm Smoothing.\n Dmap with {len(a)}/20 \n PCA with {len(b)}/20 subjects", fontsize=12)
ax.set(xlim=[0,1])
if legend==False:
ax.get_legend().remove()
else:
ax.legend(bbox_to_anchor=(1.02, 0.55), loc='upper left', borderaxespad=0)
plt.tight_layout()
def plot_srfs_dice(a,b,c,d,title,diceL,diceR):
figure=plt.figure(figsize=(2,4), dpi=180)
plt.subplot(2,2,1)
plt.imshow(a)
plt.title(diceL,fontsize=6)
plt.axis('off')
plt.subplot(2,2,2)
plt.imshow(b)
plt.axis('off')
mlab.clf()
plt.subplot(2,2,3)
plt.imshow(c)
plt.title(diceR,fontsize=6)
plt.axis('off')
plt.subplot(2,2,4)
plt.imshow(d)
plt.axis('off')
figure.suptitle(title, fontsize=12)
plt.subplots_adjust(left=0.1,
bottom=0.5,
top=0.9,
wspace=-0.1,
hspace=0)
mlab.close()
return figure
# plt.savefig(f'{file}.png',bbox_inches='tight',facecolor='w')
# plt.close()
def get_sensROIS(subID,hemi):
if hemi =='R':
V1=sub_dict[subID].RV1
S1=sub_dict[subID].RS1
A1=sub_dict[subID].RA1
elif hemi =='L':
V1=sub_dict[subID].LV1
S1=sub_dict[subID].LS1
A1=sub_dict[subID].LA1
return V1,S1,A1
def get_sens2pk(data,hemi):
#### add a hemi argument to specify left and right ROIs
#### set up sensory lists. we've got 9 measures per subjectper hemisphere...
parV1=[]
parS1=[]
parA1=[]
tmpV1=[]
tmpS1=[]
tmpA1=[]
mparV1=[]
mparS1=[]
mparA1=[]
x=0
for key in data:
V1,S1,A1=get_sensROIS(key,hemi)
if np.isnan(data[key][0]).any()==False:
parV1.append(np.min(data[key][0][V1]))
parS1.append(np.min(data[key][0][S1]))
parA1.append(np.min(data[key][0][A1]))
else:
parV1.append(np.nan)
parS1.append(np.nan)
parA1.append(np.nan)
if np.isnan(data[key][1]).any()==False:
tmpV1.append(np.min(data[key][1][V1]))
tmpS1.append(np.min(data[key][1][S1]))
tmpA1.append(np.min(data[key][1][A1]))
else:
tmpV1.append(np.nan)
tmpS1.append(np.nan)
tmpA1.append(np.nan)
if np.isnan(data[key][2]).any()==False:
mparV1.append(np.min(data[key][2][V1]))
mparS1.append(np.min(data[key][2][S1]))
mparA1.append(np.min(data[key][2][A1]))
else:
mparV1.append(np.nan)
mparS1.append(np.nan)
mparA1.append(np.nan)
return [parV1,parS1,parA1],[tmpV1,tmpS1,tmpA1],[mparV1,mparS1,mparA1]
def prep_sens2pkSubjPlots(hemi):
""" Specify hemisphere as 'L' or 'R' """
lParV1=[]
lParS1=[]
lParA1=[]
lTmpV1=[]
lTmpS1=[]
lTmpA1=[]
mParV1=[]
mParS1=[]
mParA1=[]
for i in containL:
#lateral parietal
lParV1.append(get_sens2pk(i,hemi)[0][0])
lParS1.append(get_sens2pk(i,hemi)[0][1])
lParA1.append(get_sens2pk(i,hemi)[0][2])
#lateral temporal
lTmpV1.append(get_sens2pk(i,hemi)[1][0])
lTmpS1.append(get_sens2pk(i,hemi)[1][1])
lTmpA1.append(get_sens2pk(i,hemi)[1][2])
#medial parietal
mParV1.append(get_sens2pk(i,hemi)[2][0])
mParS1.append(get_sens2pk(i,hemi)[2][1])
mParA1.append(get_sens2pk(i,hemi)[2][2])
to_dict=[lParV1,lParS1,lParA1,lTmpV1,lTmpS1,lTmpA1,mParV1,mParS1,mParA1]
for i in range(len(to_dict)):
to_dict[i]=dict(zip(sub_dict.keys(),np.vstack(to_dict[i]).T))
return to_dict
def plot_subjectwiseDist(dic,title):
ticks=list(range(80,100,2))
# dic=pd.DataFrame.from_dict(dic)
ax=sn.lineplot(data=dic,marker='o')
ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
ax.set_xticks(range(10))
ax.set_xticklabels(ticks)
plt.ylabel('Distance')
plt.xlabel('Gradient Threshold')
plt.title(title)
def plot_pk2sens(hemi):
out=[]
for key in sub_dict:
if hemi =='L':
metric=sub_dict[key].LdistSens
thr_dists=[]
for thr in range(80,100,2):
L,R=dat.get_peaks_postZones(thr)
distances=[]
for peak in range(len(L)):
if np.isnan(L[peak][0]).any()==True:
distances.append(np.nan)
else:
dist=np.nanmin(metric[L[peak]])
distances.append(dist)
thr_dists.append(np.hstack(distances))
out.append(thr_dists)
if hemi =='R':
metric=sub_dict[key].RdistSens
thr_dists=[]
for thr in range(80,100,2):
L,R=dat.get_peaks_postZones(thr)
distances=[]
for peak in range(len(R)):
if np.isnan(R[peak][0]).any()==True:
distances.append(np.nan)
else:
dist=np.nanmin(metric[R[peak]])
distances.append(dist)
thr_dists.append(np.hstack(distances))
out.append(thr_dists)
tst=dict(zip(sub_dict.keys(),out))
latPar={}
latTmp={}
medPar={}
for key in tst:
lpar=np.vstack(tst[key])[:,0]
latPar[key]=lpar
ltmp=np.vstack(tst[key])[:,1]
latTmp[key]=ltmp
mpar=np.vstack(tst[key])[:,2]
medPar[key]=mpar
return latPar,latTmp,medPar
def force_df(dictionary):
return pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in dictionary.items() ]))
def get_parcels(prc):
prc_file=nib.load(prc)
prc=prc_file.labeltable.get_labels_as_dict()
parcels={}
for key in prc:
parcels[prc[key]]=(np.where(prc_file.darrays[0].data==key)[0])
del parcels['???']
#### adds flexibility to other parcellations, especially those derived from cifti-spearate
parc=parcels.copy()
for key, value in parc.items():
if value.size==0:
del parcels[key]
return parcels
def box_plot_parcelsXsub(data,plot=True):
data=force_df(data)
# data.drop(columns='L_Medial_wall',inplace=True)
for key in data:
subset=data[key].dropna()
num=np.sum(subset==0)
den=subset.shape
if num==1:
# data[key]<0.01=np.nan
data.loc[data[key]<0.01]=np.nan
print(key)
re_order=list(data.mean().sort_values(ascending=True).keys())
data=data[re_order]
# data=data.min().to_frame().T
labels=list(data.columns)
melted=data.melt()
# melted['Primary Cortex']=0
for key in yeo_dictL:
melted.loc[melted['variable']==key,'Primary Cortex']=yeo_dictL[key]
melted.loc[melted['variable']=='L_S_calcarine','Primary Cortex']='V1'
melted.loc[melted['variable']=='L_S_central','Primary Cortex']='S1'
melted.loc[melted['variable']=='L_S_temporal_transverse','Primary Cortex']='A1'
# custom=hcp.yeo7['rgba']
# for key in custom:
# custom[key]=rgb2hex(custom[key])
custom['V1']='#FF5733'
custom['A1']='#77F1E1'
custom['S1']='#09ed05'
if plot==True:
fig = plt.gcf()
fig.set_size_inches(15,10)
# pal =sn.color_palette(custom.values())
ax=sn.boxplot(data=melted,x='variable',y='value',hue='Primary Cortex',palette=custom,dodge=False)
sn.despine(offset=0, trim=True);
ax.set_xticklabels(labels,rotation = 90,size=10)
ax.legend(bbox_to_anchor=(1.02, 0.55), loc='upper left', borderaxespad=0)
plt.tight_layout()
return data,melted,re_order
#### remove lone zeros
def quitaZeros(data):
for key in data:
subset=data[key].dropna()
num=np.sum(subset==0)
den=subset.shape
if num==1:
data.loc[data[key]<0.01]=np.nan
return data
def applyNetworkHue(df):
labels=list(df.columns)
melted=df.melt()
# melted['Primary Cortex']=0
for label in labels:
melted.loc[melted['variable']==label,'Primary Cortex']=yeo_dictL[label]
melted.loc[melted['variable']=='L_S_calcarine','Primary Cortex']='V1'
melted.loc[melted['variable']=='L_S_central','Primary Cortex']='S1'
melted.loc[melted['variable']=='L_S_temporal_transverse','Primary Cortex']='A1'
return melted
def region_order(dat,thr):
a=force_df(dat).mean().sort_values()
a=pd.DataFrame(a)
a.reset_index(inplace=True)
a.reset_index(inplace=True)
a.set_index('index',inplace=True)
a.rename(columns={'level_0':f'order {thr}'},inplace=True)
a.rename(columns={0:f'dist {thr}'},inplace=True)
a.drop('L_Medial_wall',inplace=True)
a=a.T
return a