-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathp-linoz.f
874 lines (769 loc) · 31.6 KB
/
p-linoz.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
c-----------------------------------------------------------------------
c---(p-linoz.f) p-code 5.5a (Prather 5/2008 - fix colm & interp)
c---Linoz chemistry subs:
c LNZ_INIT, LNZ_SET, LNZ_PML, LNZ_SETO3, INT_LAT, INT_SOM, INT_MID
c DECAY, TPAUSEB, TPAUSEG
c
c-----------------------------------------------------------------------
subroutine LNZ_INIT
c-----------------------------------------------------------------------
c---read/init Linoz data & other strat chem tables from pratmo box model
c-----------------------------------------------------------------------
c---converts standard stratospheric tables (1:NLINZT) from PRATMO chemistry model
c--- STRTBL is converted in SCTM with vertical moments ___0, ___1, ___2
c--- O3 colm above top CTM layer calc as LZO3COL(J,M) (DU)
c---LINOZ tables are pre-computed as STRTBL(25,18,12,7):
c NLINZT = 1:7 = no of std Linoz tables (can be expanded)
c NLINZL = 1:25 = pressure levels from 58 km down to 10 km by 2 km
c NLINZJ = 1:18 = std latitudes 85S to 85N, 10 deg intervals
c M = 1:12 = month
c---alternative table no's are chemistries, eg, loss freq for N2O, CFCs, ...
c these can be inclded if NT > 7
c---note that the 1st and 2nd order moments are not used now in Linoz
c but have been important in tracer studies (N2O, CFCs, ...)
c-----------------------------------------------------------------------
use cmn_precision, only: r8
use cmn_size, only: JPAR, LPAR
use cmn_ctm, only: ZEDG, YDGRD
use cmn_chem, only: NLINZJ, NLINZL, NLINZT,
& O3SFCLZ, ZN2OSFC, ZCH4SFC, O3TAULZ, LZLBO3, E90VMR_TP,
& O3iso1, O3iso2, CHLORLZ, T195LZ,
& LZTBL0, LZTBL1, LZTBL2, TPSCLZ, ZPSCLZ, TACTLZ,
& LZMIN, LZO3COL
use cmn_parameters, only: CPI180
implicit none
c-----------------------------------------------------------------------
character(len=80) TITL1, INITFI
integer J,K,L,M,N,NL
real(r8) P0L(LPAR+1),YSTRT(NLINZJ)
real(r8) XPSD,XPSLM1,XPSL,P0,P1,P2,F0,F1,F2,PS(NLINZL+6),
& F(NLINZL+5)
real(r8) STRTBL(NLINZL,NLINZJ,12,NLINZT),TPARM(NLINZL,JPAR,12)
real(r8) TLCAR(NLINZL)
c-----------------------------------------------------------------------
c---Assumes that primary input routine has already read in:
c LSTRAT = .true. = do Linoz chemistry
c N_LZ = tracer number for Linoz O3 (nominally = 1, must be >0)
c O3SFCLZ = O3 value to reset lower boundary (mole fraction = v/v)
c O3TAULZ = e-fold time (s) to force O3=>O3SFCLZ (if < 300 sec, inst. reset)
c LZLBO3 = L value of the top of Boudnary Layer to reset Linoz O3 to O3SFCLZ
c E90VMR_TP = O3 value that determeines chemical tropopause (mole fraction)
c---Linoz coefficients: 7 tables, 12 months, 18 latitudes, 25 layers
c---z* layers are arranged in 2 km intervals from 10 km to 58 km.
INITFI='tables/linoz2004_2006jpl'
open(8,file=INITFI,status='old',form ='formatted')
read(8,1001) TITL1
write(6,1001) TITL1
do N = 1,NLINZT
read(8,1001) TITL1
do M = 1,12
do J = 1,18
read(8,1003) (STRTBL(K,J,M,N),K=NLINZL,1,-1)
enddo
enddo
enddo
close(8)
c---data for PSC-parameterized O3 loss:
c---Cl loading for Polar O3 loss, scaled to 1987 figures (WMO'98 Ch.11)
c--- PSC loss = (CHLORLZ)**2 / (2.75)**2
c--- e.g., 2004 = 3.427, 1987 = 2.750
INITFI='tables/polar_o3loss.dat'
open(8,file=INITFI,status='old',form ='formatted')
read(8,1001) TITL1
write(6,1001) TITL1
read(8,1002) O3SFCLZ, ZN2OSFC, ZCH4SFC
write(6,1004) ' Surface O3Strat concentraion =',O3SFCLZ
write(6,1004) ' Surface ZN2OSFC concentraion =',ZN2OSFC
write(6,1004) ' Surface ZCH4SFC concentraion =',ZCH4SFC
read(8,1002) O3TAULZ
write(6,1004)' First-order lifetime to attain o3ssfc =',O3TAULZ
read(8,'(I10)') LZLBO3
read(8,1002) E90VMR_TP, O3iso1, O3iso2
write(6,1004)
& ' Recommended tropopause threshold mix. ratio =',E90VMR_TP
write(*,'(a,2es10.3)')
& ' STEFLUX isopleth 1/2 vmr =',O3iso1,O3iso2
C---default CHLORLZ value, can/should be reset for appropriate year
read(8,1002) CHLORLZ
write(6,1004) ' Cl loading =',CHLORLZ
read(8,1002) T195LZ
write(6,1004) ' T PSC threshold =',T195LZ
read(8,1001) TITL1
write(6,1001) TITL1
read(8,1003) (TLCAR(K),K=NLINZL,1,-1)
close(8)
1001 format (a80)
1002 format (8e10.3)
1003 format (20x,6e10.3/(8e10.3))
1004 format (a,1p,e11.3)
c---set up std z* atmosphere: p = 1000 * 10**(-z*/16 km)
c---scan downward from 58 km to 10 km in 2 km intervals, constant >58 km
c---assume STRTBL defined at z* level and linearly interpolated to z* +-2km
c---no. of 2-km layers from highest alt to surface (lowest 5 layers not defined)
c---
c---PS(1) = 58 km, ..., PS(25) = 10 km, PS(30=NL) = 0 km
NL = NLINZL + 5
XPSD = 10._r8 ** (0.125_r8)
PS(1) = 1000._r8 * 10._r8**(-58._r8 / 16._r8)
do L = 2,NL
PS(L) = PS(L-1) * XPSD
enddo
c---pratmo table latitudes
YSTRT(1) = -85._r8
do J = 2,NLINZJ
YSTRT(J) = YSTRT(J-1) + 10._r8
enddo
c---lowest layer to allow Linoz chemistry: table values below 10 km are zero.
LZMIN = 1
do L = 1,LPAR
if (ZEDG(L) .gt. 237._r8) LZMIN = L
enddo
c---CTM layer edges down from top
do K = 1,LPAR+1
P0L(K) = ZEDG(LPAR+2-K)
enddo
c---loop over parameter tables
do N = 1,NLINZT
c---interpolate vs. latitude, from pratmo's STRTBL to CTM's TPARM(temporary)
call INT_LAT(NLINZL,NLINZJ, JPAR,JPAR, YSTRT,YDGRD,
& STRTBL(1,1,1,N),TPARM)
do M = 1,12
do J = 1,JPAR
c---load the profile value in F(:), 0-2-4-...-58 km (zero lowest L)
do K = 1,NLINZL
F(K) = TPARM(K,J,M)
enddo
K=NLINZL
F(K+1) = F(K)
F(K+2) = F(K)
F(K+3) = F(K)
F(K+4) = F(K)
F(K+5) = F(K)
if (N .ne. 3) then
c---now integrate with moments the values over CTM layers L
do L = 1,LPAR
P1 = P0L(L+1)
P2 = P0L(L)
call INT_SOM(P1,P2,F0,F1,F2,PS,F,NL)
LZTBL0(J,L,M,N) = F0
LZTBL1(J,L,M,N) = F1
LZTBL2(J,L,M,N) = F2
enddo
else
c---for O3 column, interpolate (not integrate) to the mid-point of each CTM L
do L = 1,LPAR
P0 = 0.5_r8*(P0L(L+1)+P0L(L))
call INT_MID (P0,F0,PS,F,NL)
LZTBL0(J,L,M,N) = F0
enddo
P0 = P0L(1)
call INT_MID(P0,F0,PS,F,NL)
LZO3COL(J,M) = F0
endif
enddo
enddo
enddo
c---set up the PSC loss parameters: (Cariolle et al. 1990):
do K = 1,NLINZL
F(K) = TLCAR(K)
enddo
K=NLINZL
F(K+1) = F(K)
F(K+2) = F(K)
F(K+3) = F(K)
F(K+4) = F(K)
F(K+5) = F(K)
do L = 1,LPAR
P1 = P0L(L+1)
P2 = P0L(L)
call INT_SOM(P1,P2,F0,F1,F2,PS,F,NL)
TPSCLZ(L) = -F0
c---needs to be scaled by CHLORLZ squared: [Cl]**2 / [Cl @ 1987]**2
enddo
c---maximum SZA for PSC loss (= tangent ht as sunset)
c---calc approx ht of mid layer =F0 (km) and estimate sunset SZA
do L = 1,LPAR
F0 = max(16._r8*log10(1000._r8/(0.5_r8*(ZEDG(L)+ZEDG(L+1)))),
& 0._r8)
F1 = (90._r8 + sqrt(F0)) * CPI180
ZPSCLZ(L) = cos(F1)
enddo
c---activation temperature: <195 K, and poleward of 40 deg only
do J=1,JPAR
if (abs(YDGRD(J)) .gt. 40._r8) then
TACTLZ(J) = T195LZ
else
TACTLZ(J) = 0._r8
endif
enddo
return
end
c-----------------------------------------------------------------------
subroutine LNZ_SET (MONTH,NYR)
c-----------------------------------------------------------------------
c---set up Linoz (& other strat) table data for each day/month/year
c-----------------------------------------------------------------------
c---LINOZ tables
c 1- ozone (Logan climatology), v/v
c 2- Temperature climatology, K
c 3- Column ozone climatology (Logan) above box mid-pt, DU
c 4- ozone (P-L) for climatological ozone, v/v/s
c 5- d(P-L) / dO3, 1/s
c 6- d(P-L) / dT, v/v/s/K
c 7- d(P-L) / d(column O3), v/v/s/DU
c 8- loss freq, 1/s for strat tracers (N2O, ...)
c-----------------------------------------------------------------------
use cmn_size, only: JPAR, LPAR
use cmn_chem, only: NLINZT, LZTBL0, LZTBL1, LZTBL2,
& LZPML0, LZPML1, LZPML2, O3TOPLZ, LZO3COL
use utilities, only: ctmExitC
implicit none
c-----------------------------------------------------------------------
integer, intent(in):: MONTH,NYR
integer J,L,N
c-----------------------------------------------------------------------
if (NYR .lt. 1900) then
call ctmExitC('>>>Linoz stop--cannot do YR<1900')
endif
c---LINOZ parameter tables (1:NLINZT) are top-down, filled to CTM's L=1:LPAR
c---NB these could be interp to DAY/MONTH/YEAR
do N = 1,NLINZT
do L = 1,LPAR
do J = 1,JPAR
LZPML0(J,L,N) = LZTBL0(J,L,MONTH,N)
LZPML1(J,L,N) = LZTBL1(J,L,MONTH,N) ! moments not used by Linoz
LZPML2(J,L,N) = LZTBL2(J,L,MONTH,N) ! moments not used by Linoz
enddo
enddo
enddo
c---climatology: O3 column above model top for DAY/MONTH/YEAR
do J = 1,JPAR
O3TOPLZ(J) = LZO3COL(J,MONTH)
enddo
c---polar O3 loss rates (Cariolle et al. 1990): just passed thru
c--- loss freq TPSCLZ(1:LM), SZA limit ZPSCLZ(1:LM), & activ T TLACT(1:JM)
c---need to reset CHLORLZ here if is to be changed over the simulation
return
end
c-----------------------------------------------------------------------
subroutine LNZ_SETO3
c-----------------------------------------------------------------------
c--initialize Linoz O3 (N=N_LZ) based on supplied climatology
c-----------------------------------------------------------------------
use cmn_precision, only: r8, rMom
use cmn_size, only: IPAR, JPAR, LPAR, LLINOZ
use cmn_ctm, only:
& AIR, STT, SUT, SVT, SWT, SUU, SVV, SWW, SUV, SUW, SVW
use cmn_chem, only: N_LZ, LZPML0, LZPML1, LZPML2, O3SFCLZ, LZMIN,
& LZONE, TMASSMIX2MOLMIX
implicit none
c-----------------------------------------------------------------------
integer I,J,L,LR
if (LLINOZ .and. N_LZ.ne.0) then
c---zero moments - could use supplied vertical moments
SUT(:,:,:,N_LZ)=0._r8
SVT(:,:,:,N_LZ)=0._rMom
SWT(:,:,:,N_LZ)=0._rMom
SUU(:,:,:,N_LZ)=0._rMom
SVV(:,:,:,N_LZ)=0._rMom
SWW(:,:,:,N_LZ)=0._rMom
SUV(:,:,:,N_LZ)=0._rMom
SUW(:,:,:,N_LZ)=0._rMom
SVW(:,:,:,N_LZ)=0._rMom
c---set Linoz O3 (N_LZ) to climatology above LZMIN, to O3SFCLZ below
c---assumes LNZ_SET has been called to set LZPML0 for the MONTH/DAY
do L = LZMIN,LPAR
LR = LPAR+1-L
do J=1,JPAR
do I=1,IPAR
STT(I,J,L,N_LZ) = LZPML0(J,LR,1)*AIR(I,J,L)
& / TMASSMIX2MOLMIX(N_LZ)
SWT(I,J,L,N_LZ) = LZPML1(J,LR,1)*AIR(I,J,L)
& / TMASSMIX2MOLMIX(N_LZ)
SWW(I,J,L,N_LZ) = LZPML2(J,LR,1)*AIR(I,J,L)
& / TMASSMIX2MOLMIX(N_LZ)
enddo
enddo
enddo
do L = 1,LZMIN-1
do J=1,JPAR
do I=1,IPAR
STT(I,J,L,N_LZ) = O3SFCLZ*AIR(I,J,L)/TMASSMIX2MOLMIX(N_LZ)
enddo
enddo
enddo
c---do not rescale the LINOZ tracer with LZONE
LZONE(N_LZ) = .false.
endif
print*, '* LINOZ tracer is initialized'
return
end
c-----------------------------------------------------------------------
subroutine LNZ_PML(BTT,BXT,BXX,BYT,BYY,BZT,BZZ,BXY,BXZ,BYZ
& ,AIRB,BTEM,LSTRATAIR_E90B,UTTAU,DTCHEM,MP,
& LZLBO3X, N)
c-----------------------------------------------------------------------
c---Linoz = linearize P-L for stratospheric ozone based on tables from
c the PRATMO model using climatological T, O3, Month
c-----------------------------------------------------------------------
use cmn_precision, only: r8, rMom
use cmn_size, only: LPAR, NPAR, IDBLK, JDBLK
use cmn_ctm, only: MPBLKIB, MPBLKIE, MPBLKJB, MPBLKJE,
& AREAXY, XDGRD, YDGRD, SOLDEC, SOLDIS
use cmn_chem, only: N_LZ, O3SFCLZ, O3TAULZ, CHLORLZ, LZPML0,
& LZMIN, TPSCLZ, O3TOPLZ, TACTLZ, ZPSCLZ, TMASSMIX2MOLMIX
use cmn_diag, only: O3PML, LFLXDG, O3PBLSINK
use utilities, only: LOCSZA
implicit none
c-----------------------------------------------------------------------
real(r8), intent(inout), dimension(LPAR,NPAR,IDBLK,JDBLK):: BTT
real(rMom), intent(inout), dimension(LPAR,NPAR,IDBLK,JDBLK)::
& BXT, BXX, BYT, BYY, BZT, BZZ, BXY, BXZ, BYZ
real(r8), intent(in), dimension(LPAR,IDBLK,JDBLK) :: AIRB, BTEM
real(r8), intent(in) :: UTTAU, DTCHEM
integer, intent(in):: MP,N,LZLBO3X
logical, intent(in):: LSTRATAIR_E90B(LPAR,IDBLK,JDBLK)
c---DOBF = 0.5*6.022d23*1000/(48.*1.d4*2.687d16) = weighting for half-layer
real(r8),parameter :: DOBF = 23345.45_r8
real(r8),parameter :: HRSEC2 = 0.5_r8/3600._r8
real(r8) AIRFAC,CLIMO3,CLIMPML,DERO3,DERTMP,DERCO3,DCO3,DTMP
real(r8) UTSZA,COSSZA,SOLFX, FXYZP(LPAR),COLO3(LPAR)
real(r8) STTNEW,STTOLD,PMLNET, FXYZL,FXYZS,CLPSC
real(r8) ZO3SSFC, SSO3
integer I,J,II,JJ,L,LR
c---------------------set ups needed------------------------------------
c---Linoz applied to tracer = N: nominally N=1 for strat or trop+Linoz runs
c---note that Lower Boundary is reset (L=1:LZLBO3) so LZLBO3=0 for trop-O3 runs
c
c---for ASAD, call LINOZ (... 1,4) for O3strat, and (... n,0) for true O3
c
c---LZMIN =lowest layer to allow Linoz or any strat-table chemistry:
c--- i.e., no table values below 10 km in pressure alt (237.14 hPa)
c
c---O3TOPLZ = ozone column above top of model (climatology, see STRATL)
c
c---LZPML0(J,LR,1:7) tables loaded for this day/month/year (currently just month)
c 7 tables, each a function of
c month (12),
c latitude (18: -85 to 85 in 10 deg. increments)
c altitude (25: z*=10-58 km in 2 km increments).
c 1- ozone (Logan climatology), v/v [CLIMO3]
c 2- Temperature climatology, K
c 3- Column ozone climatology (Logan) integrated above box, DU
c 4- ozone (P-L) for climatological ozone, v/v/s [CLIMPML]
c 5- d(P-L) / dO3, 1/s [DERO3]
c 6- d(P-L) / dT, v/v/s/K [DERTMP]
c 7- d(P-L) / d(column O3), v/v/s/DU [DERCO3]
c-----------------------------------------------------------------------
c---UT time (hrs) for PSC chemistry uses mid-point in time step
c---(for J-values, UTSZA must be the end point in the time step!)
UTSZA = UTTAU + HRSEC2*DTCHEM
c e-fold time for O3 at lower boundary (L=1:LZLBO3): O3TAULZ < 300s => just rest
if (O3TAULZ .gt. 300._r8) then
FXYZS = 1._r8 - exp(-DTCHEM/O3TAULZ)
else
FXYZS = 1._r8
endif
ZO3SSFC = O3SFCLZ/TMASSMIX2MOLMIX(N_LZ)
c---enhanced polar O3 loss (Cariolle 1990) with loss freq TPSCLZ(LR) < 0
FXYZP(:) = 0._r8
if (CHLORLZ .gt. 0._r8) then
CLPSC = (CHLORLZ/2.75_r8)**2
do L = LZMIN,LPAR
LR = LPAR+1-L
FXYZP(LR) = 1._r8 - exp(TPSCLZ(LR)*CLPSC*DTCHEM)
enddo
endif
c-----------------------------------------------------------------------
c---major loop pair over IJ-block
c-----------------------------------------------------------------------
do J = MPBLKJB(MP),MPBLKJE(MP)
JJ = J - MPBLKJB(MP) + 1
do I = MPBLKIB(MP),MPBLKIE(MP)
II = I - MPBLKIB(MP) + 1
c---need SZA if doing enhanced, PSC Cl-driven O3 loss
if (CHLORLZ .gt. 0._r8) then
call LOCSZA(UTSZA,XDGRD(I),YDGRD(J),SOLDEC,SOLDIS,COSSZA,SOLFX)
endif
c---ozone column above mid-layer for each CTM Level (in Dobson Units)
COLO3(LPAR) = O3TOPLZ(J) + BTT(LPAR,N,II,JJ)*DOBF/AREAXY(I,J)
do L = LPAR-1,1,-1
COLO3(L) = COLO3(L+1) +
& (BTT(L,N,II,JJ)+BTT(L+1,N,II,JJ))*DOBF/AREAXY(I,J)
enddo
c-----------------------------------------------------------------------
c---LINOZ chemistry over altitudes LZMIN:LM, boundary over 1:LZLBO3
do L = LZMIN,LPAR
if (LSTRATAIR_E90B(L,II,JJ)) then
LR = LPAR+1-L
STTOLD = BTT(L,N,II,JJ)
STTNEW = STTOLD
AIRFAC=AIRB(L,II,JJ)/TMASSMIX2MOLMIX(N)
c---climatological ozone (v/v = mole fraction mixing ratio)
CLIMO3 = LZPML0(J,LR,1)*AIRFAC
c---climatological P-L
CLIMPML = LZPML0(J,LR,4)
c---partial derivative: d(P-L)/dO3 < 0
DERO3 = LZPML0(J,LR,5)
c---partial derivative: d(P-L)/dT
DERTMP = LZPML0(J,LR,6)
c---partial derivative: d(P-L)/dcol-O3
DERCO3 = LZPML0(J,LR,7)
c---differences from climatology
DTMP = BTEM(L,II,JJ) - LZPML0(J,LR,2)
DCO3 = COLO3(L) - LZPML0(J,LR,3)
c---steady-state ozone: can be negative in lower strat, but timescale is long
SSO3 = CLIMO3 - AIRFAC*(CLIMPML+DCO3*DERCO3+DTMP*DERTMP)/DERO3
c---use DERO3 (<0) timescale to decay to Steady-State.
PMLNET = (SSO3 - STTOLD)*(1._r8 - exp(DERO3*DTCHEM))
STTNEW = STTOLD + PMLNET
c---PSC-activ loss depends on T (incl. <195K & lat>40), sun above horizon(L)
if (CHLORLZ .gt. 0._r8) then
if (BTEM(L,II,JJ) .lt. TACTLZ(J)) then
if (COSSZA .gt. ZPSCLZ(L)) then
PMLNET = -STTOLD*FXYZP(LR)
STTNEW = STTOLD + PMLNET
endif
endif
endif
if (LFLXDG .and. N.eq.N_LZ) then
AIRFAC = AIRB(L,II,JJ)/TMASSMIX2MOLMIX(N)
c if (BTT(L,N,II,JJ)/AIRFAC .le. O3iso1 )
c & O3PML(I,J,1) = PMLNET + O3PML(I,J,1)
c if (BTT(L,N,II,JJ)/AIRFAC .le. O3iso2 )
c & O3PML(I,J,2) = PMLNET + O3PML(I,J,2)
c Rather check Linoz STE through e90 surface
if (.not.LSTRATAIR_E90B(L,II,JJ))
& O3PML(I,J,4) = PMLNET + O3PML(I,J,4)
endif
BTT(L,N,II,JJ) = STTNEW
c---reduce moments if O3 is reduced
if (STTNEW .lt. STTOLD) then
FXYZL = STTNEW/STTOLD
BXT(L,N,II,JJ) = BXT(L,N,II,JJ) * FXYZL
BYT(L,N,II,JJ) = BYT(L,N,II,JJ) * FXYZL
BZT(L,N,II,JJ) = BZT(L,N,II,JJ) * FXYZL
BXX(L,N,II,JJ) = BXX(L,N,II,JJ) * FXYZL
BYY(L,N,II,JJ) = BYY(L,N,II,JJ) * FXYZL
BZZ(L,N,II,JJ) = BZZ(L,N,II,JJ) * FXYZL
BXY(L,N,II,JJ) = BXY(L,N,II,JJ) * FXYZL
BXZ(L,N,II,JJ) = BXZ(L,N,II,JJ) * FXYZL
BYZ(L,N,II,JJ) = BYZ(L,N,II,JJ) * FXYZL
endif
endif
enddo
c---reset O3 at lower boundary (L=1:LZLBO3) using e-fold time O3TAULZ
if (N .eq. N_LZ) then
do L = 1,LZLBO3X
STTOLD = BTT(L,N,II,JJ)
PMLNET = (ZO3SSFC*AIRB(L,II,JJ) - STTOLD) * FXYZS
STTNEW = STTOLD + PMLNET
c if (LFLXDG) O3PBLSINK(I,J) = PMLNET + O3PBLSINK(I,J)
c Store in FLX diagnose 4
if (LFLXDG) O3PBLSINK(I,J,4) = PMLNET + O3PBLSINK(I,J,4)
BTT(L,N,II,JJ) = STTNEW
c---reduce moments if O3 is reduced
if (STTNEW .lt. STTOLD) then
FXYZL = STTNEW/STTOLD
BXT(L,N,II,JJ) = BXT(L,N,II,JJ) * FXYZL
BYT(L,N,II,JJ) = BYT(L,N,II,JJ) * FXYZL
BZT(L,N,II,JJ) = BZT(L,N,II,JJ) * FXYZL
BXX(L,N,II,JJ) = BXX(L,N,II,JJ) * FXYZL
BYY(L,N,II,JJ) = BYY(L,N,II,JJ) * FXYZL
BZZ(L,N,II,JJ) = BZZ(L,N,II,JJ) * FXYZL
BXY(L,N,II,JJ) = BXY(L,N,II,JJ) * FXYZL
BXZ(L,N,II,JJ) = BXZ(L,N,II,JJ) * FXYZL
BYZ(L,N,II,JJ) = BYZ(L,N,II,JJ) * FXYZL
endif
enddo
endif
enddo
enddo
return
end
c-----------------------------------------------------------------------
subroutine INT_LAT(KPRA,JPRA,JCTM,JPAR, XPRA,XCTM, TPRA,TCTM)
c-----------------------------------------------------------------------
c---interpolate from pratmo standard tables (85S to 85N) -> CTM J-grid
c--- table TPRA with lat grid XPRA ==> table TCTM with lat grid XCTM
c---assume tables are for 12 months
c-----------------------------------------------------------------------
use cmn_precision, only: r8
implicit none
integer, intent(in):: KPRA,JPRA,JCTM,JPAR
real(r8), intent(in):: XPRA(JPRA),XCTM(JPAR),TPRA(KPRA,JPRA,12)
real(r8), intent(out):: TCTM(KPRA,JPAR,12)
integer I,II,J,K,M
real(r8) CNST1,CNST2
c----------------------------------------------------------------------
J = 2
c---this logic works only if CTM grid finer than 10 deg
do I = 1,JCTM
if (XCTM(I) .gt. XPRA(1)) then
if (XCTM(I) .lt. XPRA(JPRA)) then
CNST1 = (XPRA(J) - XCTM(I)) / (XPRA(J) - XPRA(J-1))
CNST2 = 1._r8 - CNST1
do M = 1,12
do K = 1,KPRA
TCTM(K,I,M) = CNST1*TPRA(K,J-1,M) + CNST2*TPRA(K,J,M)
enddo
enddo
II = min(I+1,JCTM)
if (XCTM(II) .gt. XPRA(J)) J = min(JPRA,J+1)
else
c---CTM latitude > +85
do M = 1,12
do K = 1,KPRA
TCTM(K,I,M) = TPRA(K,JPRA,M)
enddo
enddo
endif
else
c---CTM latitude < -85
do M = 1,12
do K = 1,KPRA
TCTM(K,I,M) = TPRA(K,1,M)
enddo
enddo
endif
enddo
return
end
c-----------------------------------------------------------------------
subroutine INT_MID (P0,F0,PS,F,NL)
c-----------------------------------------------------------------------
c---For a CTM model level at mid-pt pressure = P0,
c--- interpolates the value F0 from F linearly in p on the std grid PS
c--- assumes PS(1) > PS(2) > PS(3) ... > PS(NL+1)
c-----------------------------------------------------------------------
use cmn_precision, only: r8
implicit none
integer, intent(in):: NL
real(r8), intent(in) :: P0,PS(NL+1),F(NL)
real(r8), intent(out):: F0
integer I
real(r8) XB
c-----------------------------------------------------------------------
F0 = 0._r8
do I = NL,1,-1
if (PS(I) .lt. P0) then
c-------- have found: PS(I) >= P0 > PS(I+1)--------------
XB = (P0-PS(I))/(PS(I+1)-PS(I))
XB = min( 1._r8, max( 0._r8, XB))
F0 = F(I) + XB*(F(I+1) - F(I))
goto 2
endif
enddo
F0 = F(1)
2 continue
return
end
c-----------------------------------------------------------------------
subroutine INT_SOM (P1,P2,F0,F1,F2,PS,F,NL)
c-----------------------------------------------------------------------
c---For a CTM model level bounded by pressure P1 > P2,
c--- integrates (p-avg) the value F0 from F on the std (2-km) grid PS
c--- assumes top=PS(1) < PS(2) < PS(3) ... > PS(30) = 1000 mb
c---NOTE reverse order in P's
c---Assume that the quantity is constant over range halfway to layer above/below
c--- and calculate box edges from P=0 to P=1000
c---For a CTM model level between pressure range P1 > P2 (decreasing up)
c---calculate the SOM Z-moments of the loss freq at std z* (log-p) intervals
c-------- the pressure levels BETWEEN z* values are:
c PS(i) > PS(i+1) bounds z*(i)
c-------- The MOMENTS for a square-wave or 'bar': F(x)=F0 b<=x<=c, =0.0 else
c----- S0 = f0 (x) [from x=b to x=c]
c----- S1 = 3 f0 (x^2 - x) [from x=b to x=c]
c----- S2 = 5 f0 (2x^3 - 3x^2 + x) [from x=b to x=c]
c-----------------------------------------------------------------------
use cmn_precision, only: r8
implicit none
integer, intent(in):: NL
real(r8), intent(in) :: P1,P2,PS(NL),F(NL)
real(r8), intent(out):: F0,F1,F2
integer I
real(r8) XB,XC,PC,PB,SGNF0, PF1,PF2
c-----------------------------------------------------------------------
F0 = 0._r8
F1 = 0._r8
F2 = 0._r8
do I = 1,NL
if (I.eq.1) then
PF1 = 0._r8
else
PF1 = 0.5_r8*(PS(I-1)+PS(I))
endif
if (I.eq.NL) then
PF2 = 1000._r8
else
PF2 = 0.5_r8*(PS(I)+PS(I+1))
endif
PC = min(P1,PF2)
PB = max(P2,PF1)
if (PC .gt. PB) then
C--- have condition: P1 .ge. PC .gt. PB .ge. P2
C--- and 0 .le. XB .lt. XC .le. 1
XC = (PC-P2)/(P1-P2)
XB = (PB-P2)/(P1-P2)
c-------- assume that the quantity, F, is constant over interval [XLO,XUP],
c-------- F0: (c-b), F1: 6((c2-c)-(b2-b)), F2: 5((2c3-3c2+c)-(2b3-3b2+b))
c-------- calculate its contribution to the moments in the interval [0,1]
F0 = F0 +F(I) *(XC -XB)
F1 = F1 +F(I) *3._r8 *((XC *XC -XC) - (XB *XB -XB))
F2 = F2 +F(I) *5._r8 *
& ((XC+XC-1._r8)*(XC*XC -XC) - (XB+XB-1._r8)*(XB*XB -XB))
endif
enddo
c---limiter on Z-moments: force monotonicity (tables can be + or -)
SGNF0 = sign(1._r8, F0)
F0 = abs(F0)
if (F2 .gt. 0._r8) then
c-------- do.not.allow reversal of curvature: F2 > 0 -------------------
F2 = min(F2, abs(F1)*0.333333_r8, 0.5_r8*F0)
if (F1 .lt. 0._r8) then
F1 = max(-(F0+F2), F1)
else
F1 = min(+(F0+F2), F1)
endif
else
c-------- F2 < 0 = curved down at ends, allow if F1 < F0 ---------------
F1 = min(F0, max(-F0, F1))
F2 = max(F2, (abs(F1)-F0), (-abs(F1)*0.333333_r8))
endif
F0 = SGNF0 * F0
F1 = SGNF0 * F1
F2 = SGNF0 * F2
return
end
c-----------------------------------------------------------------------
subroutine DECAY (BTT,BXT,BXX,BYT,BYY,BZT,BZZ,BXY,BXZ,BYZ
& ,DTCHEM,MP)
c-----------------------------------------------------------------------
c---provides a simple e-fold decay of species throughout the model domain
c---supplements ASAD chemistry for Rn-222, other labeled tracers, ...
c---only acts on tracers with an 'e' as first char in their name.
c------------------------------------------------------------------------
use cmn_precision, only: r8, rMom
use cmn_size, only: LPAR, NPAR, IDBLK, JDBLK
use cmn_ctm, only: NTM, MPBLKIB, MPBLKIE, MPBLKJB, MPBLKJE
use cmn_chem, only: TNAME
implicit none
c-----------------------------------------------------------------------
real(r8), intent(inout), dimension(LPAR,NPAR,IDBLK,JDBLK):: BTT
real(rMom), intent(inout), dimension(LPAR,NPAR,IDBLK,JDBLK)::
& BXT, BXX, BYT, BYY, BZT, BZZ, BXY, BXZ, BYZ
real(r8), intent(in):: DTCHEM
integer, intent(in):: MP
integer I,J,L,N
real(r8) F1L,DECTIM
c------------------------------------------------------------------------
!// CTM3: Not in use (see oc_utilities.f: decay_e90)
stop 'p-linoz: DECAY not in use for CTM3!'
do N = 1,NTM
if (TNAME(N)(1:1).eq.'e') then
read(TNAME(N),'(1x,f3.0)') DECTIM
if (DECTIM .gt. 0._r8) then
F1L = exp(-DTCHEM/(86400._r8*DECTIM))
do J = 1,MPBLKJE(MP)-MPBLKJB(MP)+1
do I = 1,MPBLKIE(MP)-MPBLKIB(MP)+1
do L = 1,LPAR
BTT(L,N,I,J) = BTT(L,N,I,J)*F1L
BZT(L,N,I,J) = BZT(L,N,I,J)*F1L
BZZ(L,N,I,J) = BZZ(L,N,I,J)*F1L
BXZ(L,N,I,J) = BXZ(L,N,I,J)*F1L
BYZ(L,N,I,J) = BYZ(L,N,I,J)*F1L
BXT(L,N,I,J) = BXT(L,N,I,J)*F1L
BXX(L,N,I,J) = BXX(L,N,I,J)*F1L
BYT(L,N,I,J) = BYT(L,N,I,J)*F1L
BYY(L,N,I,J) = BYY(L,N,I,J)*F1L
BXY(L,N,I,J) = BXY(L,N,I,J)*F1L
enddo
enddo
enddo
endif
endif
if (TNAME(N).eq.'O3f') then
DECTIM = 4._r8 ! Synoz: 4 day efold to zero at L=1
F1L = exp(-DTCHEM/(86400._r8 * DECTIM))
do J = 1,MPBLKJE(MP)-MPBLKJB(MP)+1
do I = 1,MPBLKIE(MP)-MPBLKIB(MP)+1
BTT(1,N,I,J) = BTT(1,N,I,J)*F1L
BZT(1,N,I,J) = BZT(1,N,I,J)*F1L
BZZ(1,N,I,J) = BZZ(1,N,I,J)*F1L
BXZ(1,N,I,J) = BXZ(1,N,I,J)*F1L
BYZ(1,N,I,J) = BYZ(1,N,I,J)*F1L
BXT(1,N,I,J) = BXT(1,N,I,J)*F1L
BXX(1,N,I,J) = BXX(1,N,I,J)*F1L
BYT(1,N,I,J) = BYT(1,N,I,J)*F1L
BYY(1,N,I,J) = BYY(1,N,I,J)*F1L
BXY(1,N,I,J) = BXY(1,N,I,J)*F1L
enddo
enddo
endif
enddo
return
end
c-----------------------------------------------------------------------
subroutine TPAUSEB (BTT,AIRB,LSTRATAIR_E90B,MP)
c-----------------------------------------------------------------------
c define the tropopause level based on Linoz O3 (N=N_LZ)
c note that LSTRATAIR_E90(L,I,J) is a 3D logical, .true. = stratospheric
c called within the IJ-blocks, ONLY re-set of LSTRATAIR_E90 during the run
c-----------------------------------------------------------------------
use cmn_precision, only: r8
use cmn_size, only: LPAR, NPAR, IDBLK, JDBLK
use cmn_ctm, only: MPBLKIB, MPBLKIE, MPBLKJB, MPBLKJE
use cmn_chem, only: Ne90, TNAME, E90VMR_TP, TMASSMIX2MOLMIX
implicit none
c-----------------------------------------------------------------------
real(r8), Intent(in) :: BTT(LPAR,NPAR,IDBLK,JDBLK)
real(r8), Intent(in) :: AIRB(LPAR,IDBLK,JDBLK)
Integer, Intent(in) :: MP
Logical, Intent(out) :: LSTRATAIR_E90B(LPAR,IDBLK,JDBLK)
real(r8) ZPAUSE
integer I, J, L
!// CTM3: Not in use (see oc_utilities.f: tpauseb_e90)
stop 'in TPAUSEB'
c Select O3 isopleth as chemical tropopause
ZPAUSE = E90VMR_TP/TMASSMIX2MOLMIX(Ne90)
do J = 1,MPBLKJE(MP)-MPBLKJB(MP)+1
do I = 1,MPBLKIE(MP)-MPBLKIB(MP)+1
do L = 1,LPAR
LSTRATAIR_E90B(L,I,J) =
& BTT(L,Ne90,I,J) .lt. ZPAUSE*AIRB(L,I,J)
enddo
enddo
enddo
return
end
c-----------------------------------------------------------------------
subroutine TPAUSEG
c-----------------------------------------------------------------------
c define the tropopause level based on Linoz O3 (N=N_LZ)
c note that LSTRATAIR_E90(I,J,L) is a 3D logical, .true. = stratospheric
c ***called/used during setup, based on init Linoz O3 or restart values
c-----------------------------------------------------------------------
use cmn_precision, only: r8
use cmn_size, only: IPAR, JPAR, LPAR
use cmn_ctm, only: AIR, STT
use cmn_chem, only: Ne90, E90VMR_TP, LSTRATAIR_E90,TMASSMIX2MOLMIX
implicit none
c-----------------------------------------------------------------------
real(r8) ZPAUSE
integer I, J, L
!// CTM3: Not in use (see oc_utilities.f: tpause_e90)
stop 'in TPAUSEG'
LSTRATAIR_E90(:,:,:) = .false.
if (Ne90 .gt. 0) then
c Select O3 isopleth as chemical tropopause
ZPAUSE = E90VMR_TP/TMASSMIX2MOLMIX(Ne90)
do J=1,JPAR
do I=1,IPAR
do L=1,LPAR
LSTRATAIR_E90(L,I,J) = STT(I,J,L,Ne90) .lt. ZPAUSE*AIR(I,J,L)
enddo
enddo
enddo
endif
return
end