-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhicpro_bin_quality_detect.py
65 lines (62 loc) · 2.49 KB
/
hicpro_bin_quality_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
###detect bin quality of hicpro result
###Nutures
###2020-08-09
import pandas as pd
import os
import re
import sys
import argparse
import datetime
import time
def main(argv):
parser = argparse.ArgumentParser(description="")
parser.add_argument('-m','--inputfile',required=True, help="Matrix file generated by hic-pro ")
parser.add_argument('-o','--outputfile',required=True, help="Output file of bin interaction frequency")
args = parser.parse_args()
startTime = datetime.datetime.now()
print "Starting ======",startTime.strftime('%Y-%m-%d %H:%M:%S'),"======="
input_file = args.inputfile
output_file = args.outputfile
print input_file, output_file
i = 0
for name in open(input_file):
species,bins,freq = BinFreq(name)
print species,bins,freq
if i == 0:
df = pd.DataFrame(index=[species],columns=[bins])
df.loc[species,bins] = freq
i = i+1
elif species not in df._stat_axis.values.tolist() and bins not in df.columns.values.tolist():
df.loc[species]=0
df[bins] = 0
df.loc[species,bins] = freq
elif species not in df._stat_axis.values.tolist():
df.loc[species]=0
df.loc[species,bins] = freq
elif bins not in df.columns.values.tolist():
df[bins]=0
df.loc[species,bins] = freq
else:
df.loc[species,bins] = freq
df = df.sort_index(axis=0)
df = df.sort_index(axis=1)
df.to_excel(output_file)
def BinFreq(name):
matrix_filename = name.strip()
species = matrix_filename.split("/")[1] + "_" + matrix_filename.split("/")[6]
bins = int(matrix_filename.split("/")[8])
print "runing................ "
datas=pd.read_csv(matrix_filename,header=None,sep='\t') #read data
datas.columns=['bin1','bin2','frequency'] #resname column name
datas_dic = datas.groupby('bin1').frequency.apply(list).to_dict()# convert data format
suitable_bin = []
for i in datas_dic.keys():
sum_freq = sum(datas_dic[i]) # Calculate the sum of bin interaction frequencies
if sum_freq > 2000: #Determine whether the bin is appropriate
suitable_bin.append(i)
suitable_bin_proportion = (float(len(suitable_bin))/float(len(datas_dic.keys())))*100
freq ="{:.4f}".format(suitable_bin_proportion)
print len(suitable_bin),len(datas_dic.keys()),suitable_bin_proportion
return species,bins,freq
if __name__ == "__main__":
main(sys.argv[1:])