Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Question about the latent layer used in pretrain model #20

Open
lishensuo opened this issue Nov 16, 2024 · 0 comments
Open

Question about the latent layer used in pretrain model #20

lishensuo opened this issue Nov 16, 2024 · 0 comments

Comments

@lishensuo
Copy link

Hi, I load the pretrain model that you have provided and find the lantent layer is VAELatentLayer. According the codes in CellPLM/latent/autoencoders.py, it seems the ordinary VAE encoder, not the Gaussian mixture prior distribution that mentioned in your paper. Could you please explain the question? Thanks a lot.

PRETRAIN_VERSION = '20231027_85M'
DEVICE = 'cuda:0'

from CellPLM.pipeline import load_pretrain

load_pretrain(pretrain_prefix=PRETRAIN_VERSION, # Specify the pretrain checkpoint to load
              overwrite_config={},
              pretrain_directory='../ckpt')
OmicsFormer(
  (embedder): OmicsEmbeddingLayer(
    (act): ReLU()
    (norm0): GroupNorm(4, 1024, eps=1e-05, affine=True)
    (dropout): Dropout(p=0.2, inplace=False)
    (extra_linear): Sequential(
      (0): Linear(in_features=1024, out_features=1024, bias=True)
      (1): ReLU()
      (2): Dropout(p=0.2, inplace=False)
      (3): GroupNorm(4, 1024, eps=1e-05, affine=True)
    )
    (pe_enc): Sinusoidal2dPE(
      (pe_enc): Embedding(10000, 1024)
    )
    (feat_enc): OmicsEmbedder()
  )
  (mask_model): MaskBuilder()
  (encoder): TransformerEncoder(
    (layers): ModuleList(
      (0-3): 4 x FlowformerLayer(
        (self_attn): Flow_Attention(
          (query_projection): Linear(in_features=1024, out_features=1024, bias=True)
          (key_projection): Linear(in_features=1024, out_features=1024, bias=True)
          (value_projection): Linear(in_features=1024, out_features=1024, bias=True)
          (out_projection): Linear(in_features=1024, out_features=1024, bias=True)
          (dropout): Dropout(p=0.01, inplace=False)
        )
        (_ff_block): Sequential(
          (0): Linear(in_features=1024, out_features=2048, bias=True)
          (1): GELU(approximate='none')
          (2): Dropout(p=0.2, inplace=False)
          (3): Linear(in_features=2048, out_features=1024, bias=True)
          (4): Dropout(p=0.2, inplace=False)
        )
        (dropout1): Dropout(p=0.2, inplace=False)
        (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
    )
  )
  (latent): LatentModel(
    (layers): ModuleList(
      (0): PlaceholderLayer()
      (1): VAELatentLayer(
        (hid_2mu): Linear(in_features=1024, out_features=512, bias=True)
        (hid_2sigma): Linear(in_features=1024, out_features=512, bias=True)
      )
    )
  )
  (decoder): NBMLPDecoder(
    (layers): ModuleList(
      (0): Sequential(
        (0): Linear(in_features=512, out_features=1024, bias=True)
        (1): PReLU(num_parameters=1)
        (2): Dropout(p=0.2, inplace=False)
        (3): GroupNorm(4, 1024, eps=1e-05, affine=True)
      )
    )
    (covariate_layers): ModuleList(
      (0): ModuleDict(
        (batch): Sequential(
          (0): Embedding(12596, 1024)
          (1): PReLU(num_parameters=1)
          (2): GroupNorm(4, 1024, eps=1e-05, affine=True)
        )
        (dataset): Sequential(
          (0): Embedding(484, 1024)
          (1): PReLU(num_parameters=1)
          (2): GroupNorm(4, 1024, eps=1e-05, affine=True)
        )
      )
    )
    (out_layer): NB(
      (dec_1): Linear(in_features=1024, out_features=128, bias=True)
      (dec_mean): Sequential(
        (0): Linear(in_features=128, out_features=19374, bias=True)
        (1): MeanAct()
      )
      (dec_disp_act): DispAct()
    )
  )
  (objective): Objectives(
    (layers): ModuleList(
      (0): NBReconstructionLoss()
    )
  )
  (pre_latent_norm): PreLatentNorm(
    (norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
  )
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant