-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvlstm_mine.py
273 lines (216 loc) · 9.68 KB
/
convlstm_mine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import torch.nn as nn
# Original ConvLSTM cell as proposed by Shi et al.
class ConvLSTMCell(nn.Module):
def __init__(self, in_channels,
out_channels,
kernel_size,
padding,
frame_size,
batch_size,
device,
activation="tanh"):
super(ConvLSTMCell, self).__init__()
if activation == "tanh":
self.activation = torch.tanh
elif activation == "relu":
self.activation = torch.relu
self.Wxi = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
self.Wxf = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
self.Wxo = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
self.Wxc = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
self.Whi = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
self.Whf = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
self.Who = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
self.Whc = nn.Conv2d(
in_channels=in_channels, #we're doing conv of X and H_{k-1} together!
out_channels=out_channels, # why 4?! read above!
kernel_size=kernel_size,
padding=padding)
# Initialize weights for Hadamard Products
self.W_ci = nn.Parameter(torch.Tensor(out_channels, *frame_size))
self.W_co = nn.Parameter(torch.Tensor(out_channels, *frame_size))
self.W_cf = nn.Parameter(torch.Tensor(out_channels, *frame_size))
self.bi = nn.Parameter(torch.Tensor(out_channels, *frame_size))
self.bf = nn.Parameter(torch.Tensor(out_channels, *frame_size))
self.bc = nn.Parameter(torch.Tensor(out_channels, *frame_size))
self.bo = nn.Parameter(torch.Tensor(out_channels, *frame_size))
# FALTA INICIALIZAR OS OUTROS parametros
# Initialize the parameters
nn.init.xavier_uniform_(self.Wxi.weight)
nn.init.xavier_uniform_(self.Wxf.weight)
nn.init.xavier_uniform_(self.Wxo.weight)
nn.init.xavier_uniform_(self.Wxc.weight)
nn.init.xavier_uniform_(self.Whi.weight)
nn.init.xavier_uniform_(self.Whf.weight)
nn.init.xavier_uniform_(self.Who.weight)
nn.init.xavier_uniform_(self.Whc.weight)
nn.init.constant_(self.W_ci, 0)
nn.init.constant_(self.W_cf, 0)
nn.init.constant_(self.W_co, 0)
nn.init.constant_(self.bi, 0)
nn.init.constant_(self.bf, 0)
nn.init.constant_(self.bc, 0)
nn.init.constant_(self.bo, 0)
# Initialize Cell Input
self.C = torch.zeros(batch_size, out_channels,
frame_size[0], frame_size[1], device=device)
def forward(self, X, H_prev):
# input gate
inputGate = torch.sigmoid(self.Wxi(X) + self.Whi(H_prev) + self.W_ci*self.C + self.bi)
# forget gate
forgetGate = torch.sigmoid(self.Wxf(X) + self.Whf(H_prev)+ self.W_cf*self.C + self.bf)
# C_t
self.C = forgetGate*self.C + inputGate * self.activation(self.Wxc(X) + self.Whc(H_prev) + self.bc)
# output state
out = torch.sigmoid(self.Wxo(X) + self.Who(H_prev) + self.W_co*self.C + self.bo)
# hidden state
H = out * self.activation(self.C)
return out, H
class ConvLSTM(nn.Module):
def __init__(self, in_channels, out_channels,
kernel_size, padding, activation, frame_size, device):
super(ConvLSTM, self).__init__()
self.out_channels = out_channels
self.device = device
# We will unroll this over time steps
self.convLSTMcell = ConvLSTMCell(in_channels, out_channels,
kernel_size, padding, frame_size, activation)
def forward(self, X):
# X is a frame sequence (batch_size, num_channels, seq_len, height, width)
# Get the dimensions
#print("input size: ", X.size())
batch_size, _, seq_len, height, width = X.size()
# Initialize output
output = torch.zeros(batch_size, self.out_channels, seq_len,
height, width, device=self.device)
# Initialize Hidden State
H = torch.zeros(batch_size, self.out_channels,
height, width, device=self.device)
# Initialize Cell Input
C = torch.zeros(batch_size,self.out_channels,
height, width, device=self.device)
# Unroll over time steps
for time_step in range(seq_len):
out, H, C = self.convLSTMcell(X[:,:,time_step], H, C)
output[:,:,time_step] = H
return out, output
class Seq2Seq(nn.Module):
def __init__(self, num_channels, num_kernels, kernel_size, padding,
activation, frame_size, num_layers):
super(Seq2Seq, self).__init__()
self.sequential = nn.Sequential()
# Add First layer (Different in_channels than the rest)
self.sequential.add_module(
"convlstm1", ConvLSTM(
in_channels=num_channels, out_channels=num_kernels,
kernel_size=kernel_size, padding=padding,
activation=activation, frame_size=frame_size)
)
self.sequential.add_module(
"batchnorm1", nn.BatchNorm3d(num_features=num_kernels)
)
# Add rest of the layers
for l in range(2, num_layers+1):
self.sequential.add_module(
f"convlstm{l}", ConvLSTM(
in_channels=num_kernels, out_channels=num_kernels,
kernel_size=kernel_size, padding=padding,
activation=activation, frame_size=frame_size)
)
self.sequential.add_module(
f"batchnorm{l}", nn.BatchNorm3d(num_features=num_kernels)
)
# Add Convolutional Layer to predict output frame
self.conv = nn.Conv2d(
in_channels=num_kernels, out_channels=num_channels,
kernel_size=kernel_size, padding=padding)
def forward(self, X):
# Forward propagation through all the layers
output = self.sequential(X)
# Return only the last output frame
output = self.conv(output[:,:,-1])
return nn.Sigmoid()(output)
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader
def temp():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Seq2Seq(num_channels=1,
num_kernels=64,
kernel_size=(3, 3),
padding=(1, 1),
activation="relu",
frame_size=(64, 64),
num_layers=3).to(device)
optim = Adam(model.parameters(), lr=1e-4)
# Binary Cross Entropy, target pixel values either 0 or 1
criterion = nn.BCELoss(reduction='sum')
class ConvLSTMCell2(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size):
super(ConvLSTMCell2, self).__init__()
self.hidden_channels = hidden_channels
# Convolutional layers for input-to-hidden, hidden-to-hidden, and cell-to-input transformations
self.Wxi = nn.Conv2d(input_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
self.Whi = nn.Conv2d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
self.Wci = nn.Parameter(torch.Tensor(hidden_channels, 1, 1)) # Hadamard parameter
self.bi = nn.Parameter(torch.Tensor(hidden_channels, 1, 1))
# Initialize the parameters
nn.init.xavier_uniform_(self.Wxi.weight)
nn.init.xavier_uniform_(self.Whi.weight)
nn.init.constant_(self.Wci, 0)
nn.init.constant_(self.bi, 0)
def forward(self, x_t, H_t_1, c_t_1):
# Convolution operations
Wxi_x_t = self.Wxi(x_t)
Whi_H_t_1 = self.Whi(H_t_1)
# Element-wise operations
Wci_c_t_1 = self.Wci * c_t_1
sum_all = Wxi_x_t + Whi_H_t_1 + Wci_c_t_1 + self.bi
# Apply the sigmoid activation function
i_t = torch.sigmoid(sum_all)
return i_t
'''
# Example usage
batch_size, input_channels, height, width = 4, 3, 64, 64
hidden_channels = 16
kernel_size = 3
# Create a ConvLSTMCell
conv_lstm_cell = ConvLSTMCell(input_channels, hidden_channels, kernel_size)
# Generate some random data
x_t = torch.randn(batch_size, input_channels, height, width)
H_t_1 = torch.randn(batch_size, hidden_channels, height, width)
c_t_1 = torch.randn(batch_size, hidden_channels, height, width)
# Forward pass
i_t = conv_lstm_cell(x_t, H_t_1, c_t_1)
print(i_t.shape) # Should output: torch.Size([4, 16, 64, 64])'''