-
-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathview_transform.py
65 lines (54 loc) · 2.5 KB
/
view_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import json
import torch
import numpy as np
import cv2
from PIL import Image
from torch.utils.data import Dataset
# from torchvision import transforms
import matplotlib.pyplot as plt
from tqdm import tqdm
device_frame_from_view_frame = np.array([
[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]
])
view_frame_from_device_frame = device_frame_from_view_frame.T
# MED model
MEDMODEL_INPUT_SIZE = (512, 256)
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
MEDMODEL_CY = 47.6
medmodel_fl = 910.0
medmodel_intrinsics = np.array([
[medmodel_fl, 0.0, 0.5 * MEDMODEL_INPUT_SIZE[0]],
[0.0, medmodel_fl, MEDMODEL_CY],
[0.0, 0.0, 1.0]])
def calibration(extrinsic_matrix, cam_intrinsics, device_frame_from_road_frame=None):
if device_frame_from_road_frame is None:
device_frame_from_road_frame = np.hstack((np.diag([1, -1, -1]), [[0], [0], [1.51]]))
med_frame_from_ground = medmodel_intrinsics@view_frame_from_device_frame@device_frame_from_road_frame[:,(0,1,3)]
ground_from_med_frame = np.linalg.inv(med_frame_from_ground)
extrinsic_matrix_eigen = extrinsic_matrix[:3]
camera_frame_from_road_frame = np.dot(cam_intrinsics, extrinsic_matrix_eigen)
camera_frame_from_ground = np.zeros((3,3))
camera_frame_from_ground[:,0] = camera_frame_from_road_frame[:,0]
camera_frame_from_ground[:,1] = camera_frame_from_road_frame[:,1]
camera_frame_from_ground[:,2] = camera_frame_from_road_frame[:,3]
warp_matrix = np.dot(camera_frame_from_ground, ground_from_med_frame)
return warp_matrix
if __name__ == '__main__':
from data import PlanningDataset
dataset = PlanningDataset(split='val')
for idx, data in tqdm(enumerate(dataset)):
imgs = data["input_img"]
img0 = imgs[0]
camera_rotation_matrix = np.linalg.inv(data["camera_rotation_matrix_inv"].numpy())
camera_translation = -data["camera_translation_inv"].numpy()
camera_extrinsic = np.vstack((np.hstack((camera_rotation_matrix, camera_translation.reshape((3, 1)))), np.array([0, 0, 0, 1])))
camera_extrinsic = np.linalg.inv(camera_extrinsic)
cv2.imshow("origin_img",img0)
cv2.waitKey(0)
warp_matrix = calibration(camera_extrinsic, data["camera_intrinsic"].numpy())
transformed_img = cv2.warpPerspective(src = img0, M = warp_matrix, dsize= (512,256), flags= cv2.WARP_INVERSE_MAP)
cv2.imshow("warped_img",transformed_img)
cv2.waitKey(0)