This folder contains the implementation of the InternImage for image classification.
- Installation
- Data Preparation
- Released Models
- Evaluation
- Training from Scratch on ImageNet-1K
- Manage Jobs with Slurm
- Training with Deepspeed
- Extracting Intermediate Features
- Export
- Clone this repository:
git clone https://github.com/OpenGVLab/InternImage.git
cd InternImage
- Create a conda virtual environment and activate it:
conda create -n internimage python=3.9
conda activate internimage
- Install
CUDA>=10.2
withcudnn>=7
following the official installation instructions - Install
PyTorch>=1.10.0
andtorchvision>=0.9.0
withCUDA>=10.2
:
For examples, to install torch==1.11
with CUDA==11.3
:
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
- Install
timm==0.6.11
andmmcv-full==1.5.0
:
pip install -U openmim
mim install mmcv-full==1.5.0
pip install timm==0.6.11 mmdet==2.28.1
- Install other requirements:
pip install opencv-python termcolor yacs pyyaml scipy
# Please use a version of numpy lower than 2.0
pip install numpy==1.26.4
pip install pydantic==1.10.13
- Compiling CUDA operators
Before compiling, please use the nvcc -V
command to check whether your nvcc
version matches the CUDA version of PyTorch.
cd ./ops_dcnv3
sh ./make.sh
# unit test (should see all checking is True)
python test.py
- You can also install the operator using precompiled
.whl
files DCNv3-1.0-whl
We provide the following ways to prepare data:
Standard ImageNet-1K
We use standard ImageNet dataset, you can download it from http://image-net.org/.
-
For standard folder dataset, move validation images to labeled sub-folders. The file structure should look like:
$ tree data imagenet ├── train │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ...
Zipped ImageNet-1K
-
To boost the slow speed when reading images from massive small files, we also support zipped ImageNet, which includes four files:
train.zip
,val.zip
: which store the zipped folder for train and validate splits.train.txt
,val.txt
: which store the relative path in the corresponding zip file and ground truth label. Make sure the data folder looks like this:
$ tree data data └── ImageNet-Zip ├── train_map.txt ├── train.zip ├── val_map.txt └── val.zip $ head -n 5 meta_data/val.txt ILSVRC2012_val_00000001.JPEG 65 ILSVRC2012_val_00000002.JPEG 970 ILSVRC2012_val_00000003.JPEG 230 ILSVRC2012_val_00000004.JPEG 809 ILSVRC2012_val_00000005.JPEG 516 $ head -n 5 meta_data/train.txt n01440764/n01440764_10026.JPEG 0 n01440764/n01440764_10027.JPEG 0 n01440764/n01440764_10029.JPEG 0 n01440764/n01440764_10040.JPEG 0 n01440764/n01440764_10042.JPEG 0
ImageNet-22K
-
For ImageNet-22K dataset, make a folder named
fall11_whole
and move all images to labeled sub-folders in this folder. Then download the train-val split file (ILSVRC2011fall_whole_map_train.txt & ILSVRC2011fall_whole_map_val.txt) , and put them in the parent directory offall11_whole
. The file structure should look like:$ tree imagenet22k/ imagenet22k/ └── fall11_whole ├── n00004475 ├── n00005787 ├── n00006024 ├── n00006484 └── ...
iNaturalist 2018
-
For the iNaturalist 2018, please download the dataset from the official repository. The file structure should look like:
$ tree inat2018/ inat2018/ ├── categories.json ├── test2018 ├── test2018.json ├── train2018.json ├── train2018_locations.json ├── val2018 ├── val2018.json └── val2018_locations.json
Open-Source Visual Pretrained Models
ImageNet-1K Image Classification
name | pretrain | resolution | acc@1 | #param | FLOPs | download |
---|---|---|---|---|---|---|
InternImage-T | ImageNet-1K | 224x224 | 83.5 | 30M | 5G | ckpt | cfg |
InternImage-S | ImageNet-1K | 224x224 | 84.2 | 50M | 8G | ckpt | cfg |
InternImage-B | ImageNet-1K | 224x224 | 84.9 | 97M | 16G | ckpt | cfg |
InternImage-L | ImageNet-22K | 384x384 | 87.7 | 223M | 108G | ckpt | cfg |
InternImage-XL | ImageNet-22K | 384x384 | 88.0 | 335M | 163G | ckpt | cfg |
InternImage-H | Joint 427M | 640x640 | 89.6 | 1.08B | 1478G | ckpt | cfg |
InternImage-G | - | 512x512 | 90.1 | 3B | 2700G | ckpt | cfg |
iNaturalist 2018 Image Classification
To evaluate a pretrained InternImage
on ImageNet val, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> --master_port 12345 main.py --eval \
--cfg <config-file> --resume <checkpoint> --data-path <imagenet-path>
For example, to evaluate the InternImage-B
with a single GPU:
python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval \
--cfg configs/internimage_b_1k_224.yaml --resume internimage_b_1k_224.pth --data-path <imagenet-path>
The paper results were obtained from models trained with configs in
configs/without_lr_decay
.
To train an InternImage
on ImageNet from scratch, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> --master_port 12345 main.py \
--cfg <config-file> --data-path <imagenet-path> [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]
For example, to train or evaluate InternImage
with 8 GPU on a single node, run:
InternImage-T
:
# Train for 300 epochs
GPUS=8 sh train_in1k.sh <partition> <job-name> configs/internimage_t_1k_224.yaml
# Evaluate on ImageNet-1K
GPUS=8 sh train_in1k.sh <partition> <job-name> configs/internimage_t_1k_224.yaml --resume pretrained/internimage_t_1k_224.pth --eval
InternImage-S
:
# Train for 300 epochs
GPUS=8 sh train_in1k.sh <partition> <job-name> configs/internimage_s_1k_224.yaml
# Evaluate on ImageNet-1K
GPUS=8 sh train_in1k.sh <partition> <job-name> configs/internimage_s_1k_224.yaml --resume pretrained/internimage_s_1k_224.pth --eval
InternImage-XL
:
# Train for 300 epochs
GPUS=8 sh train_in1k.sh <partition> <job-name> configs/internimage_xl_22kto1k_384.yaml
# Evaluate on ImageNet-1K
GPUS=8 sh train_in1k.sh <partition> <job-name> configs/internimage_xl_22kto1k_384.yaml --resume pretrained/internimage_xl_22kto1k_384.pth --eval
We support utilizing DeepSpeed to reduce memory costs for training large-scale models, e.g. InternImage-H with over 1 billion parameters. To use it, first install the requirements as
pip install deepspeed==0.8.3
Then you could launch the training in a slurm system with 8 GPUs as follows (tiny and huge as examples).
The default zero stage is 1 and it could config via command line args --zero-stage
.
GPUS=8 GPUS_PER_NODE=8 sh train_in1k_deepspeed.sh <partition> <job-name> configs/internimage_t_1k_224.yaml --batch-size 128 --accumulation-steps 4
GPUS=8 GPUS_PER_NODE=8 sh train_in1k_deepspeed.sh <partition> <job-name> configs/internimage_t_1k_224.yaml --batch-size 128 --accumulation-steps 4 --eval --resume ckpt.pth
GPUS=8 GPUS_PER_NODE=8 sh train_in1k_deepspeed.sh <partition> <job-name> configs/internimage_t_1k_224.yaml --batch-size 128 --accumulation-steps 4 --eval --resume deepspeed_ckpt_dir
GPUS=8 GPUS_PER_NODE=8 sh train_in1k_deepspeed.sh <partition> <job-name> configs/internimage_h_22kto1k_640.yaml --batch-size 16 --accumulation-steps 4 --pretrained pretrained/internimage_h_jointto22k_384.pth
GPUS=8 GPUS_PER_NODE=8 sh train_in1k_deepspeed.sh <partition> <job-name> configs/internimage_h_22kto1k_640.yaml --batch-size 16 --accumulation-steps 4 --pretrained pretrained/internimage_h_jointto22k_384.pth --zero-stage 3
🤗 HuggingFace Accelerate Integration of DeepSpeed
Optionally, you could use our HuggingFace Accelerate integration to use DeepSpeed.
pip install accelerate==0.18.0
accelerate launch --config_file configs/accelerate/dist_8gpus_zero3_wo_loss_scale.yaml main_accelerate.py --cfg configs/internimage_h_22kto1k_640.yaml --data-path data/imagenet --batch-size 16 --pretrained pretrained/internimage_h_jointto22k_384.pth --accumulation-steps 4
accelerate launch --config_file configs/accelerate/dist_8gpus_zero3_offload.yaml main_accelerate.py --cfg configs/internimage_t_1k_224.yaml --data-path data/imagenet --batch-size 128 --accumulation-steps 4 --output output_zero3_offload
accelerate launch --config_file configs/accelerate/dist_8gpus_zero1.yaml main_accelerate.py --cfg configs/internimage_t_1k_224.yaml --data-path data/imagenet --batch-size 128 --accumulation-steps 4
Memory Costs
Here is the reference GPU memory cost for InternImage-H with 8 GPUs.
- total batch size = 512, 16 batch size for each GPU, gradient accumulation steps = 4.
Resolution | Zero Stage | Cpu Offloading | Memory |
---|---|---|---|
640 | zero1 | False | 22572 |
640 | zero3 | False | 20000 |
640 | zero3 | True | 19144 |
384 | zero1 | False | 16000 |
384 | zero3 | True | 11928 |
Convert Checkpoints
To convert DeepSpeed checkpoints to pytorch fp32 checkpoint, you could use the following snippet.
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, 'best.pth', tag='best')
Then, you could use best.pth
as usual, e.g., model.load_state_dict(torch.load('best.pth'))
Due to the lack of computational resources, the deepspeed training scripts are currently only verified for the first few epochs. Please fire an issue if you have problems for reproducing the whole training.
To extract the features of an intermediate layer, you could use extract_feature.py
.
For example, extract features of b.png
from layers patch_embed
and levels.0.downsample
and save them to 'b.pth'.
python extract_feature.py --cfg configs/internimage_t_1k_224.yaml --img b.png --keys patch_embed levels.0.downsample --save --resume internimage_t_1k_224.pth
Install mmdeploy
at first:
pip
To export InternImage-T
from PyTorch to ONNX, run:
python export.py --model_name internimage_t_1k_224 --ckpt_dir /path/to/ckpt/dir --onnx
To export InternImage-T
from PyTorch to TensorRT, run:
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy && git checkout v0.13.0
export MMDEPLOY_DIR=$(pwd)
# prepare our custom ops, you can find it at InternImage/tensorrt/modulated_deform_conv_v3
cp -r ../../tensorrt/modulated_deform_conv_v3 csrc/mmdeploy/backend_ops/tensorrt/
# build custom ops
mkdir -p build && cd build
cmake -DCMAKE_CXX_COMPILER=g++ -DMMDEPLOY_TARGET_BACKENDS=trt -DTENSORRT_DIR=${TENSORRT_DIR} -DCUDNN_DIR=${CUDNN_DIR} ..
make -j$(nproc) && make install
# install the mmdeploy after building custom ops
pip install -e .
cd ../
python export.py --model_name internimage_t_1k_224 --ckpt_dir /path/to/ckpt/dir --trt