forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_keynet.py
452 lines (334 loc) · 19.2 KB
/
feature_keynet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""
* This file is part of PYSLAM
*
* Adpated from https://raw.githubusercontent.com/axelBarroso/Key.Net/master/extract_multiscale_features.py, see the license therein.
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import config
config.cfg.set_lib('keynet')
import warnings # to disable tensorflow-numpy warnings: from https://github.com/tensorflow/tensorflow/issues/30427
warnings.filterwarnings('ignore', category=FutureWarning)
import os, sys, cv2
#sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from os import path, mkdir
import argparse
import keyNet.aux.tools as aux
from skimage.transform import pyramid_gaussian
import HSequences_bench.tools.geometry_tools as geo_tools
import HSequences_bench.tools.repeatability_tools as rep_tools
from keyNet.model.keynet_architecture import *
import keyNet.aux.desc_aux_function as loss_desc
from keyNet.model.hardnet_pytorch import *
from keyNet.datasets.dataset_utils import read_bw_image
import torch
from threading import RLock
from utils_tf import set_tf_logging
from .utils_sys import Printer, print_options
kVerbose = True
def build_keynet_config(keynet_base_path):
parser = argparse.ArgumentParser(description='HSequences Extract Features')
# parser.add_argument('--list-images', type=str, help='File containing the image paths for extracting features.',
# required=True)
# parser.add_argument('--results-dir', type=str, default='extracted_features/',
# help='The output path to save the extracted keypoint.')
parser.add_argument('--network-version', type=str, default='KeyNet_default',
help='The Key.Net network version name')
parser.add_argument('--checkpoint-det-dir', type=str, default=keynet_base_path + 'keyNet/pretrained_nets/KeyNet_default',
help='The path to the checkpoint file to load the detector weights.')
parser.add_argument('--pytorch-hardnet-dir', type=str, default=keynet_base_path + 'keyNet/pretrained_nets/HardNet++.pth',
help='The path to the checkpoint file to load the HardNet descriptor weights.')
# Detector Settings
parser.add_argument('--num-filters', type=int, default=8,
help='The number of filters in each learnable block.')
parser.add_argument('--num-learnable-blocks', type=int, default=3,
help='The number of learnable blocks after handcrafted block.')
parser.add_argument('--num-levels-within-net', type=int, default=3,
help='The number of pyramid levels inside the architecture.')
parser.add_argument('--factor-scaling-pyramid', type=float, default=1.2,
help='The scale factor between the multi-scale pyramid levels in the architecture.')
parser.add_argument('--conv-kernel-size', type=int, default=5,
help='The size of the convolutional filters in each of the learnable blocks.')
# Multi-Scale Extractor Settings
parser.add_argument('--extract-MS', type=bool, default=True,
help='Set to True if you want to extract multi-scale features.')
parser.add_argument('--num-points', type=int, default=2000,
help='The number of desired features to extract.')
parser.add_argument('--nms-size', type=int, default=15,
help='The NMS size for computing the validation repeatability.')
parser.add_argument('--border-size', type=int, default=15,
help='The number of pixels to remove from the borders to compute the repeatability.')
parser.add_argument('--order-coord', type=str, default='xysr',
help='The coordinate order that follows the extracted points. Use yxsr or xysr.')
parser.add_argument('--random-seed', type=int, default=12345,
help='The random seed value for TensorFlow and Numpy.')
parser.add_argument('--pyramid_levels', type=int, default=5,
help='The number of downsample levels in the pyramid.')
parser.add_argument('--upsampled-levels', type=int, default=1,
help='The number of upsample levels in the pyramid.')
parser.add_argument('--scale-factor-levels', type=float, default=np.sqrt(2),
help='The scale factor between the pyramid levels.')
parser.add_argument('--scale-factor', type=float, default=2.,
help='The scale factor to extract patches before descriptor.')
# GPU Settings
parser.add_argument('--gpu-memory-fraction', type=float, default=0.3,
help='The fraction of GPU used by the script.')
parser.add_argument('--gpu-visible-devices', type=str, default="0",
help='Set CUDA_VISIBLE_DEVICES variable.')
args = parser.parse_known_args()[0]
# remove verbose bits from tf
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# tf.logging.set_verbosity(tf.logging.ERROR)
# Set CUDA GPU environment
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_visible_devices
print('Using KeyNet version:' + args.network_version)
if not args.extract_MS:
args.pyramid_levels = 0
args.upsampled_levels = 0
return args
# convert matrix of pts into list of keypoints
def convert_pts_to_keypoints(pts, scores, sizes, levels):
assert(len(pts)==len(scores))
kps = []
if pts is not None:
# convert matrix [Nx2] of pts into list of keypoints
kps = [ cv2.KeyPoint(p[0], p[1], _size=sizes[i], _response=scores[i], _octave=levels[i]) for i,p in enumerate(pts) ]
return kps
# interface for pySLAM
class KeyNetDescFeature2D:
def __init__(self,
num_features=2000,
num_levels=5, # The number of downsample levels in the pyramid.
scale_factor=2, # The scale factor to extract patches before descriptor.
scale_factor_levels=np.sqrt(2), # The scale factor between the pyramid levels.
do_cuda=True,
do_tf_logging=False):
print('Using KeyNetDescFeature2D')
self.lock = RLock()
self.model_base_path = config.cfg.root_folder + '/thirdparty/keynet/'
set_tf_logging(do_tf_logging)
self.do_cuda = do_cuda & torch.cuda.is_available()
print('cuda:',self.do_cuda)
device = torch.device("cuda:0" if self.do_cuda else "cpu")
self.session = None
self.keypoint_size = 8 # just a representative size for visualization and in order to convert extracted points to cv2.KeyPoint
self.pts = []
self.kps = []
self.des = []
self.scales = []
self.scores = []
self.frame = None
keynet_config = build_keynet_config(self.model_base_path)
self.keynet_config = keynet_config
keynet_config.num_points = num_features
keynet_config.pyramid_levels = num_levels
keynet_config.scale_factor = scale_factor
keynet_config.scale_factor_levels = scale_factor_levels
print_options(self.keynet_config,'KEYNET CONFIG')
print('==> Loading pre-trained network.')
self.load_model()
print('==> Successfully loaded pre-trained network.')
@property
def num_features(self):
return self.keynet_config.num_points
@property
def num_levels(self):
return self.keynet_config.pyramid_levels
@property
def scale_factor(self):
return self.keynet_config.scale_factor
def __del__(self):
self.close()
def close(self):
if self.session is not None:
print('KEYNET: closing tf session')
self.session.close()
tf.reset_default_graph()
def load_model(self):
# Create graph before session :)
self.graph = tf.Graph().as_default()
# GPU Usage
tf_config = tf.ConfigProto()
tf_config.gpu_options.per_process_gpu_memory_fraction = self.keynet_config.gpu_memory_fraction
tf_config.gpu_options.allow_growth = True
#with tf.Session(config=config) as sess:
self.session = tf.Session(config=tf_config)
tf.set_random_seed(self.keynet_config.random_seed)
with tf.name_scope('inputs'):
# Define the input tensor shape
tensor_input_shape = (None, None, None, 1)
self.input_network = tf.placeholder(dtype=tf.float32, shape=tensor_input_shape, name='input_network')
self.dimension_image = tf.placeholder(dtype=tf.int32, shape=(3,), name='dimension_image')
self.kpts_coord = tf.placeholder(dtype=tf.float32, shape=(None, 2), name='kpts_coord')
self.kpts_batch = tf.placeholder(dtype=tf.int32, shape=(None,), name='kpts_batch')
self.kpts_scale = tf.placeholder(dtype=tf.float32, name='kpts_scale')
self.phase_train = tf.placeholder(tf.bool, name='phase_train')
with tf.name_scope('model_deep_detector'):
deep_architecture = keynet(self.keynet_config)
output_network = deep_architecture.model(self.input_network, self.phase_train, self.dimension_image, reuse=False)
self.maps = tf.nn.relu(output_network['output'])
# Extract Patches from inputs:
self.input_patches = loss_desc.build_patch_extraction(self.kpts_coord, self.kpts_batch, self.input_network, kpts_scale=self.kpts_scale)
# Define Pytorch HardNet
self.model = HardNet()
checkpoint = torch.load(self.keynet_config.pytorch_hardnet_dir)
self.model.load_state_dict(checkpoint['state_dict'])
if self.do_cuda:
self.model.cuda()
print('Extracting torch model on GPU')
else:
print('Extracting torch model on CPU')
self.model = model.cpu()
self.model.eval()
# Define variables
detect_var = [v for v in tf.trainable_variables(scope='model_deep_detector')]
if os.listdir(self.keynet_config.checkpoint_det_dir):
init_assign_op_det, init_feed_dict_det = tf_contrib.framework.assign_from_checkpoint(
tf.train.latest_checkpoint(self.keynet_config.checkpoint_det_dir), detect_var)
point_level = []
tmp = 0.0
factor_points = (self.keynet_config.scale_factor_levels ** 2)
self.levels = self.keynet_config.pyramid_levels + self.keynet_config.upsampled_levels + 1
#print('levels: ', [i for i in range(self.levels)])
for idx_level in range(self.levels):
tmp += factor_points ** (-1 * (idx_level - self.keynet_config.upsampled_levels))
point_level.append(self.keynet_config.num_points * factor_points ** (-1 * (idx_level - self.keynet_config.upsampled_levels)))
self.point_level = np.asarray(list(map(lambda x: int(x / tmp), point_level)))
#print('self.point_level:',self.point_level)
self.session.run(tf.global_variables_initializer())
if os.listdir(self.keynet_config.checkpoint_det_dir):
self.session.run(init_assign_op_det, init_feed_dict_det)
def extract_keynet_features(self, image):
pyramid = pyramid_gaussian(image, max_layer=self.keynet_config.pyramid_levels, downscale=self.keynet_config.scale_factor_levels)
score_maps = {}
for (j, resized) in enumerate(pyramid):
im = resized.reshape(1, resized.shape[0], resized.shape[1], 1)
feed_dict = {
self.input_network: im,
self.phase_train: False,
self.dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
im_scores = self.session.run(self.maps, feed_dict=feed_dict)
im_scores = geo_tools.remove_borders(im_scores, borders=self.keynet_config.border_size)
score_maps['map_' + str(j + 1 + self.keynet_config.upsampled_levels)] = im_scores[0, :, :, 0]
if self.keynet_config.upsampled_levels:
for j in range(self.keynet_config.upsampled_levels):
factor = self.keynet_config.scale_factor_levels ** (self.keynet_config.upsampled_levels - j)
up_image = cv2.resize(image, (0, 0), fx=factor, fy=factor)
im = np.reshape(up_image, (1, up_image.shape[0], up_image.shape[1], 1))
feed_dict = {
self.input_network: im,
self.phase_train: False,
self.dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
im_scores = self.session.run(self.maps, feed_dict=feed_dict)
im_scores = geo_tools.remove_borders(im_scores, borders=self.keynet_config.border_size)
score_maps['map_' + str(j + 1)] = im_scores[0, :, :, 0]
im_pts = []
im_pts_levels = []
for idx_level in range(self.levels):
scale_value = (self.keynet_config.scale_factor_levels ** (idx_level - self.keynet_config.upsampled_levels))
scale_factor = 1. / scale_value
h_scale = np.asarray([[scale_factor, 0., 0.], [0., scale_factor, 0.], [0., 0., 1.]])
h_scale_inv = np.linalg.inv(h_scale)
h_scale_inv = h_scale_inv / h_scale_inv[2, 2]
num_points_level = self.point_level[idx_level]
#print('num_points_level:',num_points_level)
if idx_level > 0:
res_points = int(np.asarray([self.point_level[a] for a in range(0, idx_level + 1)]).sum() - len(im_pts))
num_points_level = res_points
im_scores = rep_tools.apply_nms(score_maps['map_' + str(idx_level + 1)], self.keynet_config.nms_size)
im_pts_tmp = geo_tools.get_point_coordinates(im_scores, num_points=num_points_level, order_coord='xysr')
im_pts_tmp = geo_tools.apply_homography_to_points(im_pts_tmp, h_scale_inv)
if not idx_level:
im_pts = im_pts_tmp
else:
im_pts = np.concatenate((im_pts, im_pts_tmp), axis=0)
im_pts_levels_tmp = np.ones(len(im_pts),dtype=np.int32)*idx_level
im_pts_levels = np.concatenate((im_pts_levels, im_pts_levels_tmp), axis=0).astype(np.int32)
if self.keynet_config.order_coord == 'yxsr':
im_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], im_pts)))
sorted_idxs = (-1 * im_pts[:, 3]).argsort() # sort points with their scores
im_pts = im_pts[sorted_idxs]
im_pts_levels = im_pts_levels[sorted_idxs]
#print('im_pts_levels:',im_pts_levels)
im_pts = im_pts[:self.keynet_config.num_points]
im_pts_levels = im_pts_levels[:self.keynet_config.num_points]
# Extract descriptor from features
descriptors = []
im = image.reshape(1, image.shape[0], image.shape[1], 1)
for idx_desc_batch in range(int(len(im_pts) / 250 + 1)):
points_batch = im_pts[idx_desc_batch * 250: (idx_desc_batch + 1) * 250]
if not len(points_batch):
break
feed_dict = {
self.input_network: im,
self.phase_train: False,
self.kpts_coord: points_batch[:, :2],
self.kpts_scale: self.keynet_config.scale_factor * points_batch[:, 2],
self.kpts_batch: np.zeros(len(points_batch)),
self.dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
patch_batch = self.session.run(self.input_patches, feed_dict=feed_dict)
patch_batch = np.reshape(patch_batch, (patch_batch.shape[0], 1, 32, 32))
data_a = torch.from_numpy(patch_batch)
data_a = data_a.cuda()
data_a = Variable(data_a)
with torch.no_grad():
out_a = self.model(data_a)
desc_batch = out_a.data.cpu().numpy().reshape(-1, 128)
if idx_desc_batch == 0:
descriptors = desc_batch
else:
descriptors = np.concatenate([descriptors, desc_batch], axis=0)
return im_pts, descriptors, im_pts_levels
def compute_kps_des(self, im):
with self.lock:
im = im.astype(float) / im.max()
im_pts, descriptors, im_pts_levels = self.extract_keynet_features(im)
self.pts = im_pts[:,:2]
scales = im_pts[:,2]
scores = im_pts[:,3]
pts_levels = im_pts_levels
#print('scales:',self.scales)
self.kps = convert_pts_to_keypoints(self.pts, scores, scales*self.keypoint_size, pts_levels)
return self.kps, descriptors
def detectAndCompute(self, frame, mask=None): #mask is a fake input
with self.lock:
self.frame = frame
self.kps, self.des = self.compute_kps_des(frame)
if kVerbose:
print('detector: KEYNET, descriptor: KEYNET, #features: ', len(self.kps), ', frame res: ', frame.shape[0:2])
return self.kps, self.des
# return keypoints if available otherwise call detectAndCompute()
def detect(self, frame, mask=None): # mask is a fake input
with self.lock:
#if self.frame is not frame:
self.detectAndCompute(frame)
return self.kps
# return descriptors if available otherwise call detectAndCompute()
def compute(self, frame, kps=None, mask=None): # kps is a fake input, mask is a fake input
with self.lock:
if self.frame is not frame:
Printer.orange('WARNING: KEYNET is recomputing both kps and des on last input frame', frame.shape)
self.detectAndCompute(frame)
return self.kps, self.des
# return descriptors if available otherwise call detectAndCompute()
def compute(self, frame, kps=None, mask=None): # kps is a fake input, mask is a fake input
with self.lock:
if self.frame is not frame:
#Printer.orange('WARNING: KEYNET is recomputing both kps and des on last input frame', frame.shape)
self.detectAndCompute(frame)
return self.kps, self.des