forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpyramid.py
163 lines (134 loc) · 7.78 KB
/
pyramid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import math
from enum import Enum
import numpy as np
import cv2
from .utils_img import img_blocks
from .utils_sys import Printer
kVerbose = True
kNumLevelsInitSigma = 20
# pyramid types
class PyramidType(Enum):
RESIZE = 0 # only resize, do NOT filter (N.B.: filters are typically applied for obtaining a useful antialiasing effect)
# both Pyramid.imgs and Pyramid.imgs_filtered contain unfiltered resized images
RESIZE_AND_FILTER = 1 # compute separated resized images and filtered images: first resize then filter (typically used by ORB)
# Pyramid.imgs contains (unfiltered) resized images, and Pyramid.imgs_filtered contain filtered resized images
GAUSS_PYRAMID = 2 # compute images in the scale-space: first filter (with appropriate sigmas) than resize, see https://www.vlfeat.org/api/sift.html#sift-tech-ss (used by SIFT, SURF, etc...)
# both Pyramid.imgs and Pyramid.imgs_filtered contain filtered images in the scale space
# PyramidAdaptor generate a pyramid of num_levels images and extracts features in each of these images
class Pyramid(object):
def __init__(self, num_levels=4, scale_factor=1.2,
sigma0=1.0, # N.B.: SIFT use 1.6 for this value
first_level=0, # 0: start from input image; -1: start from up-scaled image*scale_factor
pyramid_type=PyramidType.RESIZE):
self.num_levels = num_levels
self.scale_factor = scale_factor
self.sigma0 = sigma0
self.first_level = first_level
self.pyramid_type = pyramid_type
self.imgs = []
self.imgs_filtered = []
self.base_img = None
self.scale_factors = None
self.inv_scale_factors = None
self.initSigmaLevels()
def initSigmaLevels(self):
num_levels = max(kNumLevelsInitSigma, self.num_levels)
self.scale_factors = np.zeros(num_levels)
self.inv_scale_factors = np.zeros(num_levels)
self.scale_factors[0]=1.0
self.inv_scale_factors[0]=1.0/self.scale_factors[0]
for i in range(1,num_levels):
self.scale_factors[i]=self.scale_factors[i-1]*self.scale_factor
self.inv_scale_factors[i]=1.0/self.scale_factors[i]
#print('self.inv_scale_factors: ', self.inv_scale_factors)
def compute(self, frame):
if self.first_level == -1:
frame = self.createBaseImg(frame) # replace the image with the new level -1 (up-resized image)
if self.pyramid_type == PyramidType.RESIZE:
return self.computeResize(frame)
elif self.pyramid_type == PyramidType.RESIZE_AND_FILTER:
return self.computeResizeAndFilter(frame)
elif self.pyramid_type == PyramidType.GAUSS_PYRAMID:
return self.computeGauss(frame)
else:
Printer.orange('Pyramid - unknown type')
return self.computeResizePyramid(frame)
def createBaseImg(self, frame):
sigma_init = 0.5 # 0.5 is the base sigma from https://www.vlfeat.org/api/sift.html#sift-tech-ss
delta_sigma = math.sqrt( max(self.sigma0*self.sigma0 - (sigma_init*sigma_init*self.scale_factor*self.scale_factor), 0.01) ) # see https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L197
frame_upscaled = cv2.resize(frame,(0,0),fx=self.scale_factor,fy=self.scale_factor)
if self.pyramid_type == PyramidType.GAUSS_PYRAMID:
return cv2.GaussianBlur(frame_upscaled,ksize=(0,0),sigmaX=delta_sigma)
else:
return frame_upscaled
# only resize, do not filter
def computeResize(self, frame):
inv_scale = 1./self.scale_factor
self.imgs = []
self.imgs_filtered = []
pyr_cur = frame
for i in range(0,self.num_levels):
self.imgs.append(pyr_cur)
self.imgs_filtered.append(pyr_cur)
if i < self.num_levels-1:
pyr_down = cv2.resize(pyr_cur,(0,0),fx=inv_scale,fy=inv_scale) # resize the unfiltered frame
pyr_cur = pyr_down
# keep separated resized images and filtered images: first resize than filter with constant sigma
def computeResizeAndFilter(self, frame):
inv_scale = 1./self.scale_factor
filter_sigmaX = 2 # setting used for computing ORB descriptors
ksize=(5,5)
self.imgs = []
self.imgs_filtered = []
pyr_cur = frame
for i in range(0,self.num_levels):
filtered = cv2.GaussianBlur(pyr_cur,ksize,sigmaX=filter_sigmaX)
self.imgs.append(pyr_cur) # self.imgs contain resized image
self.imgs_filtered.append(filtered) # self.imgs_filtered contain filtered images
if i < self.num_levels-1:
pyr_down = cv2.resize(pyr_cur,(0,0),fx=inv_scale,fy=inv_scale) # resize the unfiltered frame
pyr_cur = pyr_down
# compute images in the scale space: first filter (with appropriate sigmas) than resize
def computeGauss(self, frame):
inv_scale = 1./self.scale_factor
# from https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L212
# \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
sigma_nominal = 0.5 # original image with nominal sigma=0.5 <=from https://www.vlfeat.org/api/sift.html#sift-tech-ss
sigma0 = self.sigma0 # N.B.: SIFT use 1.6 for this value
sigma_prev = sigma_nominal
self.imgs = []
self.imgs_filtered = []
pyr_cur = frame
for i in range(0,self.num_levels):
if i == 0 and self.first_level == -1:
sigma_prev = sigma0
filtered = frame
else:
sigma_total = self.scale_factors[i] * sigma0
sigma_cur = math.sqrt(sigma_total*sigma_total - sigma_prev*sigma_prev) # this the DELTA-SIGMA according to \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
sigma_prev = sigma_cur
filtered = cv2.GaussianBlur(pyr_cur,ksize=(0,0),sigmaX=sigma_cur)
# both self.imgs and self.imgs_filtered contain filtered images in the scale space
self.imgs.append(filtered)
self.imgs_filtered.append(filtered)
if i < self.num_levels-1:
pyr_down = cv2.resize(filtered,(0,0),fx=inv_scale,fy=inv_scale) # resize the filtered frame
pyr_cur = pyr_down