forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearch_points.py
519 lines (423 loc) · 24 KB
/
search_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import sys
import math
import numpy as np
import cv2
from frame import Frame
from map_point import predict_detection_levels
from .utils_geom import skew, add_ones, normalize_vector, computeF12, check_dist_epipolar_line
from .utils_draw import draw_lines, draw_points
from .utils_sys import Printer, getchar
from .parameters import Parameters
from .timer import Timer
from rotation_histogram import RotationHistogram
kMinDistanceFromEpipole = Parameters.kMinDistanceFromEpipole
kMinDistanceFromEpipole2 = kMinDistanceFromEpipole*kMinDistanceFromEpipole
kCheckFeaturesOrientation = Parameters.kCheckFeaturesOrientation
# propagate map point matches from f_ref to f_cur (access frames from tracking thread, no need to lock)
def propagate_map_point_matches(f_ref, f_cur, idxs_ref, idxs_cur,
max_descriptor_distance=Parameters.kMaxDescriptorDistance):
idx_ref_out = []
idx_cur_out = []
rot_histo = RotationHistogram()
check_orientation = kCheckFeaturesOrientation and Frame.oriented_features
# populate f_cur with map points by propagating map point matches of f_ref;
# to this aim, we use map points observed in f_ref and keypoint matches between f_ref and f_cur
num_matched_map_pts = 0
for i, idx in enumerate(idxs_ref): # iterate over keypoint matches
p_ref = f_ref.points[idx]
if p_ref is None: # we don't have a map point P for i-th matched keypoint in f_ref
continue
if f_ref.outliers[idx] or p_ref.is_bad: # do not consider pose optimization outliers or bad points
continue
idx_cur = idxs_cur[i]
p_cur = f_cur.points[idx_cur]
if p_cur is not None: # and p_cur.num_observations > 0: # if we already matched p_cur => no need to propagate anything
continue
des_distance = p_ref.min_des_distance(f_cur.des[idx_cur])
if des_distance > max_descriptor_distance:
continue
if p_ref.add_frame_view(f_cur, idx_cur): # => P is matched to the i-th matched keypoint in f_cur
num_matched_map_pts += 1
idx_ref_out.append(idx)
idx_cur_out.append(idx_cur)
if check_orientation:
index_match = len(idx_cur_out)-1
rot = f_ref.angles[idx]-f_cur.angles[idx_cur]
rot_histo.push(rot,index_match)
if check_orientation:
valid_match_idxs = rot_histo.get_valid_idxs()
print('checking orientation consistency - valid matches % :', len(valid_match_idxs)/max(1,len(idxs_cur))*100,'% of ', len(idxs_cur),'matches')
#print('rotation histogram: ', rot_histo)
idx_ref_out = np.array(idx_ref_out)[valid_match_idxs]
idx_cur_out = np.array(idx_cur_out)[valid_match_idxs]
num_matched_map_pts = len(valid_match_idxs)
return num_matched_map_pts, idx_ref_out, idx_cur_out
# search by projection matches between {map points of f_ref} and {keypoints of f_cur}, (access frames from tracking thread, no need to lock)
def search_frame_by_projection(f_ref, f_cur,
max_reproj_distance=Parameters.kMaxReprojectionDistanceFrame,
max_descriptor_distance=Parameters.kMaxDescriptorDistance,
ratio_test=Parameters.kMatchRatioTestMap):
found_pts_count = 0
idxs_ref = []
idxs_cur = []
rot_histo = RotationHistogram()
check_orientation = kCheckFeaturesOrientation and Frame.oriented_features
#des_dists = []
# get all matched points of f_ref which are non-outlier
matched_ref_idxs = np.flatnonzero( (f_ref.points!=None) & (f_ref.outliers==False))
matched_ref_points = f_ref.points[matched_ref_idxs]
if True:
# project f_ref points on frame f_cur
projs, depths = f_cur.project_map_points(matched_ref_points)
# check if points lie on the image frame
is_visible = f_cur.are_in_image(projs, depths)
else:
# check if points are visible
is_visible, projs, depths, dists = f_cur.are_visible(matched_ref_points)
kp_ref_octaves = f_ref.octaves[matched_ref_idxs]
kp_ref_scale_factors = Frame.feature_manager.scale_factors[kp_ref_octaves]
radiuses = max_reproj_distance * kp_ref_scale_factors
kd_idxs = f_cur.kd.query_ball_point(projs, radiuses)
for i,p,j in zip(matched_ref_idxs, matched_ref_points, range(len(matched_ref_points))):
if not is_visible[j]:
continue
kp_ref_octave = f_ref.octaves[i]
#kp_ref_scale_factor = Frame.feature_manager.scale_factors[kp_ref_octave]
#radius = max_reproj_distance * kp_ref_scale_factor
best_dist = math.inf
#best_dist2 = math.inf
best_level = -1
#best_level2 = -1
best_k_idx = -1
best_ref_idx = -1
#for kd_idx in f_cur.kd.query_ball_point(projs[j], radius):
for kd_idx in kd_idxs[j]:
p_f_cur = f_cur.points[kd_idx]
if p_f_cur is not None:
if p_f_cur.num_observations > 0: # we already matched p_f_cur => discard it
continue
p_f_cur_octave = f_cur.octaves[kd_idx]
if p_f_cur_octave < (kp_ref_octave-1) or p_f_cur_octave > (kp_ref_octave+1):
continue
descriptor_dist = p.min_des_distance(f_cur.des[kd_idx])
#if descriptor_dist < max_descriptor_distance and descriptor_dist < best_dist:
if descriptor_dist < best_dist:
best_dist = descriptor_dist
best_k_idx = kd_idx
best_ref_idx = i
# if descriptor_dist < best_dist:
# best_dist2 = best_dist
# best_level2 = best_level
# best_dist = descriptor_dist
# best_level = f_cur.octaves[kd_idx]
# best_k_idx = kd_idx
# best_ref_idx = i
# else:
# if descriptor_dist < best_dist2:
# best_dist2 = descriptor_dist
# best_level2 = f_cur.octaves[kd_idx]
#if best_k_idx > -1 and best_dist < max_descriptor_distance:
if best_dist < max_descriptor_distance:
# apply match distance ratio test only if the best and second are in the same scale level
#if (best_level2 == best_level) and (best_dist > best_dist2 * ratio_test):
# continue
#print('b_dist : ', best_dist)
if p.add_frame_view(f_cur, best_k_idx):
found_pts_count += 1
idxs_ref.append(best_ref_idx)
idxs_cur.append(best_k_idx)
if check_orientation:
index_match = len(idxs_cur)-1
rot = f_ref.angles[best_ref_idx]-f_cur.angles[best_k_idx]
rot_histo.push(rot,index_match)
#print('best des distance: ', best_dist, ", max dist: ", max_descriptor_distance)
#des_dists.append(best_dist)
if check_orientation:
valid_match_idxs = rot_histo.get_valid_idxs()
print('checking orientation consistency - valid matches % :', len(valid_match_idxs)/max(1,len(idxs_cur))*100,'% of ', len(idxs_cur),'matches')
#print('rotation histogram: ', rot_histo)
idxs_ref = np.array(idxs_ref)[valid_match_idxs]
idxs_cur = np.array(idxs_cur)[valid_match_idxs]
found_pts_count = len(valid_match_idxs)
return np.array(idxs_ref), np.array(idxs_cur), found_pts_count
#return idxs_ref, idxs_cur, found_pts_count
# search by projection matches between {input map points} and {unmatched keypoints of frame f_cur}, (access frame from tracking thread, no need to lock)
def search_map_by_projection(points, f_cur,
max_reproj_distance=Parameters.kMaxReprojectionDistanceMap,
max_descriptor_distance=Parameters.kMaxDescriptorDistance,
ratio_test=Parameters.kMatchRatioTestMap):
Ow = f_cur.Ow
found_pts_count = 0
found_pts_fidxs = [] # idx of matched points in current frame
#reproj_dists = []
if len(points) == 0:
return 0
# check if points are visible
visible_pts, projs, depths, dists = f_cur.are_visible(points)
predicted_levels = predict_detection_levels(points, dists)
kp_scale_factors = Frame.feature_manager.scale_factors[predicted_levels]
radiuses = max_reproj_distance * kp_scale_factors
kd_idxs = f_cur.kd.query_ball_point(projs, radiuses)
for i, p in enumerate(points):
if not visible_pts[i] or p.is_bad: # point not visible in frame or is bad
continue
if p.last_frame_id_seen == f_cur.id: # we already matched this map point to current frame or it was outlier
continue
p.increase_visible()
# predicted_level = p.predict_detection_level(dists[i])
predicted_level = predicted_levels[i]
# kp_scale_factor = Frame.feature_manager.scale_factors[predicted_level]
# radius = max_reproj_distance * kp_scale_factor
best_dist = math.inf
best_dist2 = math.inf
best_level = -1
best_level2 = -1
best_k_idx = -1
# find closest keypoints of f_cur
#for kd_idx in f_cur.kd.query_ball_point(projs[i], radius):
#for kd_idx in f_cur.kd.query_ball_point(proj, radius):
for kd_idx in kd_idxs[i]:
p_f = f_cur.points[kd_idx]
# check there is not already a match
if p_f is not None:
if p_f.num_observations > 0:
continue
# check detection level
kp_level = f_cur.octaves[kd_idx]
if (kp_level<predicted_level-1) or (kp_level>predicted_level):
continue
descriptor_dist = p.min_des_distance(f_cur.des[kd_idx])
if descriptor_dist < best_dist:
best_dist2 = best_dist
best_level2 = best_level
best_dist = descriptor_dist
best_level = kp_level
best_k_idx = kd_idx
else:
if descriptor_dist < best_dist2:
best_dist2 = descriptor_dist
best_level2 = kp_level
#if best_k_idx > -1 and best_dist < max_descriptor_distance:
if best_dist < max_descriptor_distance:
# apply match distance ratio test only if the best and second are in the same scale level
if (best_level2 == best_level) and (best_dist > best_dist2 * ratio_test):
continue
#print('best des distance: ', best_dist, ", max dist: ", Parameters.kMaxDescriptorDistance)
if p.add_frame_view(f_cur, best_k_idx):
found_pts_count += 1
found_pts_fidxs.append(best_k_idx)
#reproj_dists.append(np.linalg.norm(projs[i] - f_cur.kpsu[best_k_idx]))
# if len(reproj_dists) > 1:
# reproj_dist_sigma = 1.4826 * np.median(reproj_dists)
# else:
reproj_dist_sigma = max_descriptor_distance
return found_pts_count, reproj_dist_sigma, found_pts_fidxs
# search by projection matches between {map points of last frames} and {unmatched keypoints of f_cur}, (access frame from tracking thread, no need to lock)
def search_local_frames_by_projection(map, f_cur, local_window = Parameters.kLocalBAWindow):
# take the points in the last N frame
points = []
frames = map.keyframes[-local_window:]
f_points = set([p for f in frames for p in f.get_points() if (p is not None)])
print('searching %d map points' % len(points))
return search_map_by_projection(points, f_cur)
# search by projection matches between {all map points} and {unmatched keypoints of f_cur}
def search_all_map_by_projection(map, f_cur):
return search_map_by_projection(map.get_points(), f_cur)
# search keypoint matches (for triangulations) between f1 and f2
# search for matches between unmatched keypoints (without a corresponding map point)
# in input we have already some pose estimates for f1 and f2
def search_frame_for_triangulation(kf1, kf2, idxs1=None, idxs2=None,
max_descriptor_distance=0.5*Parameters.kMaxDescriptorDistance):
idxs2_out = []
idxs1_out = []
num_found_matches = 0
img2_epi = None
if __debug__:
timer = Timer()
timer.start()
O1w = kf1.Ow
O2w = kf2.Ow
# compute epipoles
e1,_ = kf1.project_point(O2w) # in first frame
e2,_ = kf2.project_point(O1w) # in second frame
#print('e1: ', e1)
#print('e2: ', e2)
baseline = np.linalg.norm(O1w-O2w)
# if the translation is too small we cannot triangulate
# if baseline < Parameters.kMinTraslation: # we assume the Inializer has been used for building the first map
# Printer.red("search for triangulation: impossible with almost zero translation!")
# return idxs1_out, idxs2_out, num_found_matches, img2_epi # EXIT
# else:
medianDepth = kf2.compute_points_median_depth()
if medianDepth == -1:
Printer.orange("search for triangulation: f2 with no points")
medianDepth = kf1.compute_points_median_depth()
ratioBaselineDepth = baseline/medianDepth
if ratioBaselineDepth < Parameters.kMinRatioBaselineDepth:
Printer.orange("search for triangulation: impossible with too low ratioBaselineDepth!")
return idxs1_out, idxs2_out, num_found_matches, img2_epi # EXIT
# compute the fundamental matrix between the two frames by using their estimated poses
F12, H21 = computeF12(kf1, kf2)
if idxs1 is None or idxs2 is None:
timerMatch = Timer()
timerMatch.start()
idxs1, idxs2 = Frame.feature_matcher.match(kf1.des, kf2.des)
print('search_frame_for_triangulation - matching - timer: ', timerMatch.elapsed())
rot_histo = RotationHistogram()
check_orientation = kCheckFeaturesOrientation and Frame.oriented_features
# check epipolar constraints
for i1,i2 in zip(idxs1,idxs2):
if kf1.get_point_match(i1) is not None or kf2.get_point_match(i2) is not None: # we are searching for keypoint matches where both keypoints do not have a corresponding map point
#print('existing point on match')
continue
descriptor_dist = Frame.descriptor_distance(kf1.des[i1], kf2.des[i2])
if descriptor_dist > max_descriptor_distance:
continue
kp1 = kf1.kpsu[i1]
#kp1_scale_factor = Frame.feature_manager.scale_factors[kf1.octaves[i1]]
#kp1_size = f1.sizes[i1]
# discard points which are too close to the epipole
#if np.linalg.norm(kp1-e1) < Parameters.kMinDistanceFromEpipole * kp1_scale_factor:
#if np.linalg.norm(kp1-e1) - kp1_size < Parameters.kMinDistanceFromEpipole: # N.B.: this is too much conservative => it filters too much
# continue
kp2 = kf2.kpsu[i2]
kp2_scale_factor = Frame.feature_manager.scale_factors[kf2.octaves[i2]]
# kp2_size = f2.sizes[i2]
# discard points which are too close to the epipole
delta = kp2-e2
#if np.linalg.norm(delta) < Parameters.kMinDistanceFromEpipole * kp2_scale_factor:
if np.inner(delta,delta) < kMinDistanceFromEpipole2 * kp2_scale_factor: # OR.
# #if np.linalg.norm(delta) - kp2_size < Parameters.kMinDistanceFromEpipole: # N.B.: this is too much conservative => it filters too much
continue
# check epipolar constraint
sigma2_kp2 = Frame.feature_manager.level_sigmas2[kf2.octaves[i2]]
if check_dist_epipolar_line(kp1,kp2,F12,sigma2_kp2):
idxs1_out.append(i1)
idxs2_out.append(i2)
if check_orientation:
index_match = len(idxs1_out)-1
rot = kf1.angles[i1]-kf2.angles[i2]
rot_histo.push(rot,index_match)
#else:
# print('discarding point match non respecting epipolar constraint')
if check_orientation:
valid_match_idxs = rot_histo.get_valid_idxs()
#print('checking orientation consistency - valid matches % :', len(valid_match_idxs)/max(1,len(idxs1_out))*100,'% of ', len(idxs1_out),'matches')
#print('rotation histogram: ', rot_histo)
idxs1_out = np.array(idxs1_out)[valid_match_idxs]
idxs2_out = np.array(idxs2_out)[valid_match_idxs]
num_found_matches = len(idxs1_out)
if __debug__:
print('search_frame_for_triangulation - timer: ', timer.elapsed())
return idxs1_out, idxs2_out, num_found_matches, img2_epi
# search by projection matches between {input map points} and {unmatched keypoints of frame}
def search_and_fuse(points, keyframe,
max_reproj_distance=Parameters.kMaxReprojectionDistanceFuse,
max_descriptor_distance = 0.5*Parameters.kMaxDescriptorDistance,
ratio_test=Parameters.kMatchRatioTestMap):
#max_descriptor_distance = 0.5 * Parameters.kMaxDescriptorDistance
fused_pts_count = 0
Ow = keyframe.Ow
if len(points) == 0:
Printer.red('search_and_fuse - no points')
return
# get all matched points of keyframe
good_pts_idxs = np.flatnonzero(points!=None)
good_pts = points[good_pts_idxs]
if len(good_pts_idxs) == 0:
Printer.red('search_and_fuse - no matched points')
return
# check if points are visible
good_pts_visible, good_projs, good_depths, good_dists = keyframe.are_visible(good_pts)
if len(good_pts_visible) == 0:
Printer.red('search_and_fuse - no visible points')
return
predicted_levels = predict_detection_levels(good_pts, good_dists)
kp_scale_factors = Frame.feature_manager.scale_factors[predicted_levels]
radiuses = max_reproj_distance * kp_scale_factors
kd_idxs = keyframe.kd.query_ball_point(good_projs, radiuses)
#for i, p in enumerate(points):
for i,p,j in zip(good_pts_idxs,good_pts,range(len(good_pts))):
if not good_pts_visible[j] or p.is_bad: # point not visible in frame or point is bad
#print('p[%d] visible: %d, bad: %d' % (i, int(good_pts_visible[j]), int(p.is_bad)))
continue
if p.is_in_keyframe(keyframe): # we already matched this map point to this keyframe
#print('p[%d] already in keyframe' % (i))
continue
# predicted_level = p.predict_detection_level(good_dists[j])
# kp_scale_factor = Frame.feature_manager.scale_factors[predicted_level]
# radius = max_reproj_distance * kp_scale_factor
predicted_level = predicted_levels[j]
#print('p[%d] radius: %f' % (i,radius))
best_dist = math.inf
best_dist2 = math.inf
best_level = -1
best_level2 = -1
best_kd_idx = -1
# find closest keypoints of frame
proj = good_projs[j]
#for kd_idx in keyframe.kd.query_ball_point(proj, radius):
for kd_idx in kd_idxs[j]:
# check detection level
kp_level = keyframe.octaves[kd_idx]
if (kp_level<predicted_level-1) or (kp_level>predicted_level):
#print('p[%d] wrong predicted level **********************************' % (i))
continue
# check the reprojection error
kp = keyframe.kpsu[kd_idx]
invSigma2 = Frame.feature_manager.inv_level_sigmas2[kp_level]
err = proj - kp
chi2 = np.inner(err,err)*invSigma2
if chi2 > Parameters.kChi2Mono: # chi-square 2 DOFs (Hartley Zisserman pg 119)
#print('p[%d] big reproj err %f **********************************' % (i,chi2))
continue
descriptor_dist = p.min_des_distance(keyframe.des[kd_idx])
#print('p[%d] descriptor_dist %f **********************************' % (i,descriptor_dist))
#if descriptor_dist < max_descriptor_distance and descriptor_dist < best_dist:
if descriptor_dist < best_dist:
best_dist2 = best_dist
best_level2 = best_level
best_dist = descriptor_dist
best_level = kp_level
best_kd_idx = kd_idx
else:
if descriptor_dist < best_dist2: # N.O.
best_dist2 = descriptor_dist
best_level2 = kp_level
#if best_kd_idx > -1 and best_dist < max_descriptor_distance:
if best_dist < max_descriptor_distance:
# apply match distance ratio test only if the best and second are in the same scale level
if (best_level2 == best_level) and (best_dist > best_dist2 * ratio_test): # N.O.
#print('p[%d] best_dist > best_dist2 * ratio_test **********************************' % (i))
continue
p_keyframe = keyframe.get_point_match(best_kd_idx)
# if there is already a map point replace it otherwise add a new point
if p_keyframe is not None:
if not p_keyframe.is_bad:
if p_keyframe.num_observations > p.num_observations:
p.replace_with(p_keyframe)
else:
p_keyframe.replace_with(p)
else:
p.add_observation(keyframe, best_kd_idx)
#p.update_info() # done outside!
fused_pts_count += 1
return fused_pts_count