forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearch_points_test.py
237 lines (199 loc) · 9.54 KB
/
search_points_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import sys
import math
import numpy as np
import cv2
from frame import Frame
from .utils_geom import skew, add_ones, normalize_vector, computeF12, check_dist_epipolar_line
from .utils_draw import draw_lines, draw_points
from .utils_sys import Printer, getchar
from .parameters import Parameters
from .timer import Timer
# map an epipolar line to its end points, given an image with 'cols' columns, the epipole 'e' and the point xinf
# "e" and "xinf" work as search limits [Hartley Zisserman pag 340]
# edge points are on the rectangular boundary of the frame
def epiline_to_end_points(line, e, xinf, cols):
c = cols
l = line # [a,b,c] such that ax + by + c = 0, abs(b) > 0 otherwise we have a pependicular epipolar line
u0,v0 = map(int, [0, -l[2]/l[1] ])
u1,v1 = map(int, [c, -(l[2]+l[0]*c)/l[1] ])
delta = xinf - e
length = np.linalg.norm(delta.ravel())
delta /= length # normalize delta
step = min(Parameters.kMinDistanceFromEpipole, length) # keep a minimum distance from epipole if possible
e = e + delta * step
xmin = xinf.ravel()
xmax = e.ravel()
swap = False
if __debug__:
if False:
check_xmin = l[0]*xmin[0] + l[1]*xmin[1] + l[2]
check_xmax = l[0]*xmax[0] + l[1]*xmax[1] + l[2]
print("check_xmin: ", check_xmin)
print("check_xmax: ", check_xmax)
# swap the two variables so that xmin lies on the left of xmax
if xmin[0] > xmax[0]:
xmin, xmax = xmax, xmin
swap = True
if not math.isnan(xmin[0]) and not math.isnan(xmin[1]) and xmin[0] > u0 and xmin[0] < cols: # xmin is on the right of (u0,v0) => replace (u0,v0)
u0 = xmin[0]
v0 = xmin[1]
if not math.isnan(xmax[0]) and not math.isnan(xmax[1]) and xmax[0] < u1 and xmax[0] > 0: # xmax is on the left of (u1,v1) => replace (u1,v1)
u1 = xmax[0]
v1 = xmax[1]
# swap in order to force the search starting from xinf
if swap is True:
u0, v0, u1, v1 = u1, v1, u0, v0
return [ np.array([u0,v0]), np.array([u1,v1]) ]
# find a keypoint match on 'f' along line 'line' for the input 'descriptor'
# 'e' is the epipole
# the found keypoint match must not already have a point match
# overlap_ratio must be in [0,1]
def find_matches_along_line(f, e, line, descriptor, radius = Parameters.kMaxReprojectionDistanceFrame, overlap_ratio = 0.5):
max_descriptor_distance = 0.5*Parameters.kMaxDescriptorDistanceSearchEpipolar
#print('line: ', line[0], ", ", line[1])
step = radius*(1-overlap_ratio)
delta = line[1].ravel() - line[0].ravel()
length = np.linalg.norm(delta)
n = max( int(math.ceil(length/step)), 1)
delta = delta/n
#print('delta: ', delta)
best_dist = math.inf
best_dist2 = math.inf
best_k_idx = -1
for i in range(n+1):
x = line[0].ravel() + i*delta
for k_idx in f.kd.query_ball_point(x, radius):
# if no point associated
if f.get_point_match(k_idx) is None:
descriptor_dist = Frame.descriptor_distance(f.des[k_idx], descriptor)
if descriptor_dist < max_descriptor_distance:
if True:
return k_idx, descriptor_dist # stop at the first match
if descriptor_dist < best_dist:
best_dist2 = best_dist
best_dist = descriptor_dist
best_k_idx = k_idx
else:
if descriptor_dist < best_dist2:
best_dist2 = descriptor_dist
if False:
if best_dist2 < max_descriptor_distance: # stop once we have a second to best match
break
# N.B.: the search "segment line" can have a large width => it is better to use the match distance ratio test
if best_dist < best_dist2 * Parameters.kMatchRatioTestEpipolarLine:
return best_k_idx, best_dist
else:
return -1, 0
#return best_k_idx
# search keypoint matches (for triangulations) between f1 and f2
# search for matches between unmatched keypoints (without a corresponding map point)
# in input we have already some pose estimates for f1 and f2
# N.B.: experimental version, just for testing
def search_frame_for_triangulation_test(f1, f2, img2, img1 = None):
idxs2_out = []
idxs1_out = []
lines_out = []
num_found_matches = 0
img2_epi = None
if __debug__:
timer = Timer()
timer.start()
O1w = f1.Ow
O2w = f2.Ow
# compute epipoles
e1,_ = f1.project_point(O2w) # in first frame
e2,_ = f2.project_point(O1w) # in second frame
#print('e1: ', e1)
#print('e2: ', e2)
baseline = np.linalg.norm(O1w-O2w)
# if the translation is too small we cannot triangulate
# if False:
# if baseline < Parameters.kMinTraslation: # we assume the Inializer has been used for building the first map
# Printer.red("search for triangulation: impossible with almost zero translation!")
# return idxs1_out, idxs2_out, num_found_matches, img2_epi # EXIT
# else:
medianDepthF2 = f2.compute_points_median_depth()
ratioBaselineDepth = baseline/medianDepthF2
if ratioBaselineDepth < Parameters.kMinRatioBaselineDepth:
Printer.red("search for triangulation: impossible with too low ratioBaselineDepth!")
return idxs1_out, idxs2_out, num_found_matches, img2_epi # EXIT
# compute the fundamental matrix between the two frames by using their estimated poses
F12, H21 = computeF12(f1, f2)
idxs1 = []
for i, p in enumerate(f1.get_points()):
if p is None: # we consider just unmatched keypoints
kp = f1.kpsu[i]
scale_factor = Frame.feature_manager.scale_factors[f1.octaves[i]]
# discard points which are too close to the epipole
if np.linalg.norm(kp-e1) < Parameters.kMinDistanceFromEpipole * scale_factor:
continue
idxs1.append(i)
kpsu1 = f1.kpsu[idxs1]
if __debug__:
print('search_frame_for_triangulation - timer1: ', timer.elapsed())
timer.start()
# compute epipolar lines in second image
lines2 = cv2.computeCorrespondEpilines(kpsu1.reshape(-1,1,2), 2, F12)
lines2 = lines2.reshape(-1,3)
xs2_inf = np.dot(H21, add_ones(kpsu1).T).T # x2inf = H21 * x1 where x2inf is corresponding point according to infinite homography [Hartley Zisserman pag 339]
xs2_inf = xs2_inf[:, 0:2] / xs2_inf[:, 2:]
line_edges = [ epiline_to_end_points(line, e2, x2_inf, f2.width) for line, x2_inf in zip(lines2, xs2_inf) ]
#print("line_edges: ", line_edges)
if __debug__:
print('search_frame_for_triangulation - timer3: ', timer.elapsed())
assert(len(line_edges) == len(idxs1))
timer.start()
len_des2 = len(f2.des)
flag_match = np.full(len_des2, False, dtype=bool)
dist_match = np.zeros(len_des2)
index_match = np.full(len_des2, 0, dtype=int)
for i, idx in enumerate(idxs1): # N.B.: a point in f1 can be matched to more than one point in f2, we avoid this by caching matches with f2 points
f2_idx, dist = find_matches_along_line(f2, e2, line_edges[i], f1.des[idx])
if f2_idx > -1:
if not flag_match[f2_idx]: # new match
flag_match[f2_idx] = True
dist_match[f2_idx] = dist
idxs2_out.append(f2_idx)
idxs1_out.append(idx)
index_match[f2_idx] = len(idxs2_out)-1
assert(f2.get_point_match(f2_idx) is None)
assert(f1.get_point_match(idx) is None)
if __debug__:
lines_out.append(line_edges[i])
else: # already matched
if dist < dist_match[f2_idx]: # update in case of a smaller distance
dist_match[f2_idx] = dist
index = index_match[f2_idx]
idxs1_out[index] = idx
if __debug__:
lines_out[index] = line_edges[i]
num_found_matches = len(idxs1_out)
assert(len(idxs1_out) == len(idxs2_out))
if __debug__:
#print("num found matches: ", num_found_matches)
if True:
kpsu2 = f2.kpsu[idxs2_out]
img2_epi = draw_lines(img2.copy(), lines_out, kpsu2)
#cv2.imshow("epipolar lines",img2_epi)
#cv2.waitKey(0)
if __debug__:
print('search_frame_for_triangulation - timer4: ', timer.elapsed())
return idxs1_out, idxs2_out, num_found_matches, img2_epi