-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimation_uncertainty.R
53 lines (45 loc) · 1.85 KB
/
estimation_uncertainty.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Calculate and write out estimation_uncertainty.csv table
# History: 2023-08-11 thomast created, including plots for assessment report
# 2023-10-19 arnim streamlined for the web, producing just the table
library(FLR4MFCL)
species <- "bet"
n <- 1000
set.seed(1134)
if(!dir.exists("../grid"))
{
stop("../grid results not found, please download from\n",
"https://github.com/PacificCommunity/ofp-sam-bet-2023-grid")
}
# Grid models
model.dirs <- dir("../grid", full=TRUE)
models <- basename(model.dirs)
# Reference point estimates and standard errors
est <- sapply(file.path(model.dirs, paste0(species, ".var")), read.MFCLVar)
est <- as.data.frame(t(est))
row.names(est) <- NULL
# Apply estimation uncertainty
refarray <- array(NA_real_, dim=c(n, nrow(est), 3),
dimnames=list(NULL, NULL, c("depletion", "ffmsy", "sbsbmsy")))
for(i in 1:length(models))
{
refarray[,i,"depletion"] <- rnorm(n=n, mean=est$log.sbsbfo[i],
sd=est$log.sbsbfo.se[i])
refarray[,i,"ffmsy"] <- rnorm(n=n, mean=est$ffmsy[i],
sd=est$ffmsy.se[i])
refarray[,i,"sbsbmsy"] <- rnorm(n=n, mean=est$sbsbmsy[i],
sd=est$sbsbmsy.se[i])
}
depletion <- exp(refarray[,,"depletion"])
ffmsy <- refarray[,,"ffmsy"]
sbsbmsy <- refarray[,,"sbsbmsy"]
# Mean and quantiles
probs <- c(0.5, 0.0, 0.1, 0.9, 1.0)
uncertainty <- data.frame(
depletion=c(mean(depletion), quantile(depletion, probs)),
ffmsy=c(mean(ffmsy), quantile(ffmsy, probs)),
sbsbmsy=c(mean(sbsbmsy), quantile(sbsbmsy, probs)))
row.names(uncertainty) <- c("Mean", "Median", "Min", "10%ile", "90%ile", "Max")
uncertainty <- data.frame(Refpt=names(uncertainty), t(uncertainty),
row.names=NULL, check.names=FALSE)
# Write out table
write.csv(uncertainty, "estimation_uncertainty.csv", row.names=FALSE)