-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster_tg.py
143 lines (124 loc) · 4.97 KB
/
cluster_tg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import pyTigerGraph as tg
import json
import sys
import csv
import time
import io
from contextlib import redirect_stdout
import runner_utils
import load_tg
SLPA_QUERY_FILE_PATH='../tigergraph-3.9.2-offline/query/tg_slpa.gsql'
def load_tigergraph(conn, filename, input_dir, output_dir, tigergraph_nodes, tigergraph_edges, weighted):
conn.graphname = 'current_graph'
nodes = output_dir + filename + '_nodes.csv'
edges = output_dir + filename + '_edges.csv'
if tigergraph_edges == None or tigergraph_nodes == None:
load_tg.convert_to_tigergraph_format(filename, input_dir, output_dir)
else:
nodes = input_dir + tigergraph_nodes
edges = input_dir + tigergraph_edges
if not weighted:
print(conn.gsql('''
CREATE VERTEX Node (id INT PRIMARY KEY)
CREATE UNDIRECTED EDGE Undirected_Edge (FROM Node, TO Node)
CREATE GRAPH current_graph (Node, Undirected_Edge)
USE GRAPH current_graph
CREATE LOADING JOB job1 FOR GRAPH current_graph {{
LOAD "{nodes}" to VERTEX Node VALUES ($"ID") USING HEADER = "TRUE";
LOAD "{edges}" to EDGE Undirected_Edge VALUES ($"Node1", $"Node2") USING HEADER = "TRUE";
}}
RUN LOADING JOB job1'''.format(nodes = nodes, edges = edges)))
else:
print(conn.gsql('''
CREATE VERTEX Node (id INT PRIMARY KEY)
CREATE UNDIRECTED EDGE Undirected_Weighted_Edge (FROM Node, TO Node, weight FLOAT)
CREATE GRAPH current_graph (Node, Undirected_Weighted_Edge)
USE GRAPH current_graph
CREATE LOADING JOB job1 FOR GRAPH current_graph {{
LOAD "{nodes}" to VERTEX Node VALUES ($"ID") USING HEADER = "TRUE";
LOAD "{edges}" to EDGE Undirected_Weighted_Edge VALUES ($"Node1", $"Node2", $"Weight") USING HEADER = "TRUE";
}}
RUN LOADING JOB job1'''.format(nodes = nodes, edges = edges)))
def run_tigergraph(conn, clusterer, out_clustering, thread, config, weighted):
feat = conn.gds.featurizer()
threshold = -1
maximum_iteration = 10
edge = 'Undirected_Weighted_Edge' if weighted else 'Undirected_Edge'
split = [x.strip() for x in config.split(',')]
for config_item in split:
config_split = [x.strip() for x in config_item.split(':')]
if config_split:
if config_split[0].startswith("threshold"):
if config_split[1] != "None":
threshold = float(config_split[1])
if config_split[0].startswith("maximum_iteration"):
maximum_iteration = float(config_split[1])
f = io.StringIO()
with redirect_stdout(f):
start_time = time.time()
if clusterer == 'TigerGraphKCore':
params = {
"v_type": "Node",
"e_type": edge,
"result_attribute": "cluster",
"k_max": threshold
}
res = feat.runAlgorithm("tg_kcore", params=params, threadLimit = thread)
elif clusterer == 'TigerGraphLouvain':
params = {
"v_type_set": ["Node"],
"e_type_set": [edge],
"result_attribute": "cluster",
"maximum_iteration": maximum_iteration
}
if weighted:
params['weight_attribute'] = 'weight'
res = feat.runAlgorithm("tg_louvain", params=params, threadLimit = thread)
elif clusterer == 'TigerGraphWCC':
params = {
"v_type_set": ["Node"],
"e_type_set": [edge],
"result_attribute": "cluster"
}
res = feat.runAlgorithm("tg_wcc", params=params, threadLimit = thread)
elif clusterer == 'TigerGraphLabelProp':
params = {
"v_type_set": ["Node"],
"e_type_set": [edge],
"result_attribute": "cluster",
"maximum_iteration": maximum_iteration,
"print_limit": -1
}
res = feat.runAlgorithm("tg_label_prop", params=params, threadLimit = thread)
elif clusterer == 'TigerGraphSLLabelProp':
params = {
"v_type_set": ["Node"],
"e_type_set": [edge],
"maximum_iteration": maximum_iteration,
"result_attribute": "cluster",
"print_limit": -1,
"threshold": threshold
}
print(feat.installAlgorithm('tg_slpa', query_path=SLPA_QUERY_FILE_PATH))
res = feat.runAlgorithm("tg_slpa", params=params, threadLimit = thread, custom_query=True, feat_type = 'INT', schema_name = ["Node"], feat_name= 'cluster', timeout = 10000000)
end_time = time.time()
print("Cluster Time: " + str(end_time - start_time))
df = conn.getVertexDataFrame("Node")
result = df.groupby('cluster')['id'].apply(list).tolist()
if not (result is None):
for cluster_list in result:
runner_utils.appendToFile("\t".join(str(x) for x in cluster_list) + "\n", out_clustering)
end_time = time.time()
print("Total Time: " + str(end_time - start_time))
out = f.getvalue()
return out
def remove_tigergraph(conn):
print(conn.gsql("DROP ALL"))
if __name__ == "__main__":
conn = tg.TigerGraphConnection(
host='http://127.0.0.1',
username='tigergraph',
password='tigergraph',
)
load_tigergraph(conn, 'com-lj.ungraph.txt', '/home/sy/mount-data/', '/home/sy/ParClusterers/results/', None, None, False)
remove_tigergraph(conn)