forked from deweylab/RSEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLenDist.h
296 lines (234 loc) · 6.68 KB
/
LenDist.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#ifndef LENDIST_H_
#define LENDIST_H_
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cassert>
#include<algorithm>
#include "boost/math/distributions/normal.hpp"
#include "utils.h"
#include "simul.h"
class LenDist {
public:
LenDist(int minL = 1, int maxL = 1000) {
lb = minL - 1;
ub = maxL;
span = ub - lb;
assert(span > 0);
pdf = new double[span + 1];
cdf = new double[span + 1];
//set initial parameters
pdf[0] = cdf[0] = 0.0;
for (int i = 1; i <= span; i++) {
pdf[i] = 1.0 / span;
cdf[i] = i * 1.0 / span;
}
}
~LenDist() {
delete[] pdf;
delete[] cdf;
}
LenDist& operator=(const LenDist&);
void setAsNormal(double, double, int, int);
void init();
//the corresponding lb and ub are the original one
void update(int len, double frac) {
assert(len > lb && len <= ub);
pdf[len - lb] += frac;
}
void finish();
int getMinL() const { return lb + 1; }
int getMaxL() const { return ub; }
double getProb(int len) const {
assert(len > lb && len <= ub);
return pdf[len - lb];
}
//len : mate/fragment length
//refL : reference sequence length, in fact, this is totLen for global length distribution
double getAdjustedProb(int len, int refL) const {
if (len <= lb || len > ub || refL <= lb) return 0.0;
double denom = cdf[std::min(ub, refL) - lb];
assert(denom >= EPSILON);
return pdf[len - lb] / denom;
}
//len : length threshold, any length <= len should be calculated
//refL : reference sequence length
double getAdjustedCumulativeProb(int len, int refL) const {
assert(len > lb && len <= ub && refL > lb);
double denom = cdf[std::min(ub, refL) - lb];
assert(denom >= EPSILON);
return cdf[len - lb] / denom;
}
//for multi-thread usage
void collect(const LenDist&);
void read(FILE*);
void write(FILE*);
void copyTo(double*&, double*&, int&, int&, int&) const;
int simulate(simul*, int);
private:
int lb, ub, span; // (lb, ub]
double *pdf, *cdf;
void trim();
};
LenDist& LenDist::operator=(const LenDist& rv) {
if (this == &rv) return *this;
if (span != rv.span) {
delete[] pdf;
delete[] cdf;
pdf = new double[rv.span + 1];
cdf = new double[rv.span + 1];
}
lb = rv.lb; ub = rv.ub; span = rv.span;
memcpy(pdf, rv.pdf, sizeof(double) * (span + 1));
memcpy(cdf, rv.cdf, sizeof(double) * (span + 1));
return *this;
}
//Please give interger mean, thanks!
//minL: new minimum length, maxL: new maximum length
void LenDist::setAsNormal(double mean, double sd, int minL, int maxL) {
int meanL = int(mean + .5); // assume meanL is a integer; if not, round to nearest number.
delete[] pdf;
delete[] cdf;
if (sd < EPSILON) {
if (meanL < minL || meanL > maxL) {
fprintf(stderr, "Length distribution's probability mass is not within the possible range! MeanL = %d, MinL = %d, MaxL = %d\n", meanL, minL, maxL);
exit(-1);
}
span = 1;
lb = meanL - 1; ub = meanL;
pdf = new double[span + 1];
cdf = new double[span + 1];
pdf[0] = cdf[0] = 0.0;
pdf[1] = cdf[1] = 1.0;
return;
}
boost::math::normal norm(mean, sd);
if (maxL - minL + 1 > RANGE) {
if (meanL <= minL) maxL = minL + RANGE - 1;
else if (meanL >= maxL) minL = maxL - RANGE + 1;
else {
double lg = mean - (minL - 0.5);
double rg = (maxL + 0.5) - mean;
double half = RANGE / 2.0;
if (lg < half) { assert(rg > half); maxL = minL + RANGE - 1; }
else if (rg < half) { assert(lg > half); minL = maxL - RANGE + 1; }
else { minL = int(mean - half + 1.0); maxL = int(mean + half); }
}
}
assert(maxL - minL + 1 <= RANGE);
lb = minL - 1;
ub = maxL;
span = ub - lb;
assert(span > 0);
pdf = new double[span + 1];
cdf = new double[span + 1];
pdf[0] = cdf[0] = 0.0;
double old_val, val, sum;
sum = 0.0;
old_val = boost::math::cdf(norm, minL - 0.5);
for (int i = 1; i <= span; i++) {
val = boost::math::cdf(norm, lb + i + 0.5);
pdf[i] = val - old_val;
sum += pdf[i];
old_val = val;
}
assert(sum >= EPSILON);
for (int i = 1; i <= span; i++) {
pdf[i] /= sum;
cdf[i] = cdf[i - 1] + pdf[i];
}
trim();
}
void LenDist::init() {
memset(pdf, 0, sizeof(double) * (span + 1));
memset(cdf, 0, sizeof(double) * (span + 1));
}
void LenDist::finish() {
double sum = 0.0;
for (int i = 1; i <= span; i++) {
sum += pdf[i];
}
if (sum <= EPSILON) { fprintf(stderr, "No valid read to estimate the length distribution!\n"); exit(-1); }
for (int i = 1; i <= span; i++) {
pdf[i] = pdf[i] / sum;
cdf[i] = cdf[i - 1] + pdf[i];
}
trim();
}
void LenDist::collect(const LenDist& o) {
if (lb != o.lb || ub != o.ub) {
delete[] pdf;
delete[] cdf;
lb = o.lb; ub = o.ub; span = o.span;
pdf = new double[span + 1];
cdf = new double[span + 1];
memset(pdf, 0, sizeof(double) * (span + 1));
memset(cdf, 0, sizeof(double) * (span + 1));
}
for (int i = 1; i <= span; i++) {
pdf[i] += o.pdf[i];
}
}
void LenDist::read(FILE *fi) {
//release default space first
delete[] pdf;
delete[] cdf;
assert(fscanf(fi, "%d %d %d", &lb, &ub, &span) == 3);
pdf = new double[span + 1];
cdf = new double[span + 1];
pdf[0] = cdf[0] = 0.0;
for (int i = 1; i <= span; i++) {
assert(fscanf(fi, "%lf", &pdf[i]) == 1);
cdf[i] = cdf[i - 1] + pdf[i];
}
trim();
}
void LenDist::write(FILE *fo) {
fprintf(fo, "%d %d %d\n", lb, ub, span);
for (int i = 1; i < span; i++) {
fprintf(fo, "%.10g ", pdf[i]);
}
fprintf(fo, "%.10g\n", pdf[span]);
}
void LenDist::copyTo(double*& pdf, double*& cdf, int& lb, int& ub, int& span) const {
lb = this->lb;
ub = this->ub;
span = this->span;
pdf = new double[span + 1];
memcpy(pdf, this->pdf, sizeof(double) * (span + 1));
cdf = new double[span + 1];
memcpy(cdf, this->cdf, sizeof(double) * (span + 1));
}
//refL = -1 means that this length is generated for noise isoform
int LenDist::simulate(simul* sampler, int refL) {
int dlen;
if (refL == -1) refL = ub;
if (refL <= lb || cdf[(dlen = std::min(ub, refL) - lb)] <= 0.0) return -1;
int len = lb + 1 + sampler->sample(cdf + 1, dlen);
return len;
}
void LenDist::trim() {
int newlb, newub;
double *newpdf, *newcdf;
for (newlb = 1; newlb <= span && pdf[newlb] < EPSILON; newlb++);
newlb--;
for (newub = span; newub > newlb && pdf[newub] < EPSILON; newub--);
assert(newlb < newub);
if (newlb == 0 && newub == span) return;
span = newub - newlb;
newpdf = new double[span + 1];
memset(newpdf, 0, sizeof(double) * (span + 1));
newcdf = new double[span + 1];
memset(newcdf, 0, sizeof(double) * (span + 1));
for (int i = 1; i <= span; i++) {
newpdf[i] = pdf[i + newlb];
newcdf[i] = cdf[i + newlb];
}
delete[] pdf;
delete[] cdf;
pdf = newpdf;
cdf = newcdf;
lb += newlb;
ub = lb + span;
}
#endif /* LENDIST_H_ */