forked from hycis/transfer_learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayer.py
105 lines (81 loc) · 3.04 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from mozi.layers.linear import Linear
from mozi.layers.template import Template
from mozi.layers.activation import RELU, Softmax
import theano.tensor as T
class Merge(Template):
def __init__(self, input_dim, output_dim):
self.layers = []
self.layers.append(RELU())
self.layers.append(Linear(input_dim,200))
self.layers.append(RELU())
self.layers.append(Linear(200, output_dim))
self.layers.append(Softmax())
self.params = []
for layer in self.layers:
self.params += layer.params
def _test_fprop(self, state_below):
left, right = state_below
for layer in self.layers:
left = layer._test_fprop(left)
right = layer._test_fprop(right)
return left, right
def _train_fprop(self, state_below):
left, right = state_below
for layer in self.layers:
left = layer._train_fprop(left)
right = layer._train_fprop(right)
return left, right
class Concate(Template):
def __init__(self, input_dim, output_dim):
self.layers = []
self.layers.append(RELU())
self.layers.append(Linear(input_dim,200))
self.layers.append(RELU())
self.layers.append(Linear(200, output_dim))
self.layers.append(Softmax())
self.params = []
for layer in self.layers:
self.params += layer.params
def _test_fprop(self, state_below):
left, right = state_below
concat = T.concatenate([left, right], axis=1)
for layer in self.layers:
concat = layer._test_fprop(concat)
return concat
def _train_fprop(self, state_below):
left, right = state_below
concat = T.concatenate([left, right], axis=1)
for layer in self.layers:
concat = layer._train_fprop(concat)
return concat
class Parallel(Template):
def __init__(self, left_model, right_model):
self.left_model = left_model
self.right_model = right_model
self.params = []
for L_layer in self.left_model.layers:
self.params += L_layer.params
for R_layer in self.right_model.layers:
self.params += R_layer.params
def _test_fprop(self, state_below):
left, right = state_below
left, _ = self.left_model.test_fprop(left)
right, _ = self.right_model.test_fprop(right)
return left, right
def _train_fprop(self, state_below):
left, right = state_below
left, _ = self.left_model.train_fprop(left)
right, _ = self.right_model.train_fprop(right)
return left, right
class FlattenAll(Template):
def flatten(self, state):
if T.gt(state.ndim, 2):
state = state.reshape((state.shape[0], T.prod(state.shape[1:])))
return state
def _test_fprop(self, state_below):
left, right = state_below
left = self.flatten(left)
right = self.flatten(right)
return left, right
def _train_fprop(self, state_below):
return self._test_fprop(state_below)