-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllama_rag.py
103 lines (82 loc) · 2.63 KB
/
llama_rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import ollama
import litellm
import uuid
import psycopg2
import os
import pandas as pd
from sqlalchemy import make_url
from llama_index.llms.litellm import LiteLLM
from llama_index.vector_stores.postgres import PGVectorStore
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.core import Document, Settings, StorageContext, VectorStoreIndex
from dotenv import load_dotenv
jobs = pd.read_csv("1713798254.834989-combined-data_scientist.csv")
job_data = jobs["description"].tolist()
load_dotenv()
POSTGRES_CONN_STRING = os.getenv("POSTGRES_CONNECTION")
# Set up litellm callbacks and verbosity
litellm.success_callback = ["langfuse"]
litellm.failure_callback = ["langfuse"]
litellm.set_verbose = False
# Create documents from job_description list
job_documents = []
for desc in job_data:
current_doc = Document(text=desc)
job_documents.append(current_doc)
job_documents[0]
# Connect to database
db_name = "llama_index_vector_db"
conn = psycopg2.connect(POSTGRES_CONN_STRING)
conn.autocommit = True
# Create the db for vectors
with conn.cursor() as c:
c.execute(f"CREATE DATABASE {db_name}")
# Create a URL from DB string, and initialize Llama Index vectorstore
url = make_url(POSTGRES_CONN_STRING)
vector_store = PGVectorStore.from_params(
database=db_name,
host=url.host,
password=url.password,
port=url.port,
user=url.username,
table_name="data_scientist_jobs",
embed_dim=1024,
)
# Create storage context to be referenced for this vector store
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Ollama Arctic Embeddings
ollama_embedding = OllamaEmbedding(model_name="snowflake-arctic-embed:latest")
Settings.embed_model = ollama_embedding
index = VectorStoreIndex.from_documents(
job_documents, storage_context=storage_context, show_progress=True
)
# Meat of the work
# Kwargs for logging purposes
current_uuid = uuid.uuid4()
llm_kwargs = {
"metadata": {
"generation_name": "rag_generation",
"trace_name": "RAG_task_phi3",
"version": "0.0.1",
"trace_id": str(current_uuid),
},
}
# LiteLLM LLama 3 Model LLM
""" llm = LiteLLM(
model="together_ai/meta-llama/Llama-3-70b-chat-hf",
additional_kwargs=llm_kwargs,
) """
""" llm = LiteLLM(
model="claude-3-haiku-20240307",
additional_kwargs=llm_kwargs,
) """
llm = LiteLLM(
model="ollama/phi3:instruct",
additional_kwargs=llm_kwargs,
)
Settings.llm = llm
# Create an index from our documents
# Create query engine from the index
query_engine = index.as_query_engine(similarity_top_k=5)
response = query_engine.query("Remote jobs between 150k-200k")
print(response.response)