-
Notifications
You must be signed in to change notification settings - Fork 249
/
Copy pathapp.py
169 lines (133 loc) · 5.33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import sys
import torch
import argparse
from peft import PeftModel
import transformers
from collections import namedtuple
from transformers import (
LlamaForCausalLM, LlamaTokenizer,
AutoModel, AutoTokenizer,
BloomForCausalLM, BloomTokenizerFast, GenerationConfig)
tokenizer=None
model=None
LOAD_8BIT = False
ModelClass = namedtuple("ModelClass", ('tokenizer', 'model'))
_MODEL_CLASSES = {
"llama": ModelClass(**{
"tokenizer": LlamaTokenizer,
"model": LlamaForCausalLM,
}),
"chatglm": ModelClass(**{
"tokenizer": AutoTokenizer, #ChatGLMTokenizer,
"model": AutoModel, #ChatGLMForConditionalGeneration,
}),
"bloom": ModelClass(**{
"tokenizer": BloomTokenizerFast,
"model": BloomForCausalLM,
}),
"Auto": ModelClass(**{
"tokenizer": AutoTokenizer,
"model": AutoModel,
})
}
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
def get_model_class(model_type,
model_name_or_path,
lora_model_path):
global model, tokenizer
model_class = _MODEL_CLASSES[model_type] # tokenizer, model
model_base = model_class.model.from_pretrained(model_name_or_path,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto")
tokenizer = model_class.tokenizer.from_pretrained(model_name_or_path) # default add_eos_token=False
model = PeftModel.from_pretrained(
model_base,
lora_model_path,
torch_dtype=torch.float16,
device_map={"": device}
)
if not LOAD_8BIT:
model.half()
def predict(
instruction,
top_p=0.9,
temperature=1.0,
history=None,
max_new_tokens=512,
top_k=40,
num_beams=4,
**kwargs,
):
history = history or []
prompt = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{0}\n\n### Response:"
).format(instruction)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
do_sample=True,
no_repeat_ngram_size=6,
repetition_penalty=1.8,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print('模型回复', output)
bot_response = output.split("### Response:")[1].strip()
history.append((instruction, bot_response))
return "", history, history
def predict_test(message, top_p, temperature, history):
history = history or []
user_message = f"{message} {top_p}, {temperature}"
print(user_message)
history.append((message, user_message))
return history, history
def clear_session():
return '', '', None
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--model_type', default="llama", choices=['llama', 'chatglm', 'bloom'])
parser.add_argument('--model_name_or_path', default="decapoda-research/llama-7b-hf", type=str)
parser.add_argument('--lora_name_or_path', default="", type=str)
args = parser.parse_args()
get_model_class(args.model_type, args.model_name_or_path, args.lora_name_or_path)
block = gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""")
with block as demo:
#top_p, temperature
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.75, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
chatbot = gr.Chatbot(label="Alpaca-CoT")
message = gr.Textbox()
state = gr.State()
message.submit(predict, inputs=[message, top_p, temperature, state], outputs=[message, chatbot, state])
with gr.Row():
clear_history = gr.Button("🗑 清除历史对话 | Clear History")
clear = gr.Button('🧹 清除输入 | Clear Input')
send = gr.Button("🚀 发送 | Send")
regenerate = gr.Button("🚗 重新生成 | regenerate")
# regenerate.click(regenerate, inputs=[message], outputs=[chatbot])
regenerate.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)
send.click(predict, inputs=[message, top_p, temperature, state], outputs=[message, chatbot, state])
clear.click(lambda: None, None, message, queue=False)
clear_history.click(fn=clear_session , inputs=[], outputs=[message, chatbot, state], queue=False)
demo.queue(max_size=20, concurrency_count=20).launch(server_name="0.0.0.0", server_port=7890, debug=True, inbrowser=False, share=True)