-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
433 lines (396 loc) · 17.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import sys
def blockPrint():
sys.stdout = open(os.devnull, 'w')
sys.stderr = open(os.devnull, 'w')
def enablePrint():
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
blockPrint()
import gradio as gr
import whisperx
import gc
import argparse
import inspect
import torch
import time
import json
import subprocess
enablePrint()
from scripts.whisper_model import load_custom_model, LANG_CODES
from typing import Optional, Tuple, Callable
from scripts.config_io import read_config_value, write_config_value
from scripts.utils import * # noqa: F403
# ensure gpu_support has correct value
gpu_support, error = read_config_value("gpu_support")
if gpu_support is False:
write_config_value("gpu_support", "false")
gpu_support = "false"
if error or gpu_support not in ("false", "cuda", "rocm"):
result = subprocess.run(["nvidia-smi"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
if result.returncode == 0:
write_config_value("gpu_support", "cuda")
else:
result = subprocess.run("lspci | grep -i 'amdgpu'", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode == 0:
write_config_value("gpu_support", "rocm")
else:
write_config_value("gpu_support", "false")
# global variables
ALIGN_LANGS = ["en", "fr", "de", "es", "it", "ja", "zh", "nl", "uk", "pt", "ar", "cs", "ru", "pl", "hu", "fi", "fa", "el", "tr", "da", "he", "vi", "ko", "ur", "te", "hi", "ca", "ml", "no", "nn"]
g_model = None
g_model_a = None
g_model_a_metadata = None
g_params = {}
with open("configs/lang.json", "r", encoding="utf-8") as f:
LANG_DICT = reformat_lang_dict(json.load(f))
val, error = read_config_value("language")
if error:
write_config_value("language", "en")
LANG = "en"
else:
LANG = val
if LANG not in LANG_DICT:
LANG = "en"
print(f"WARNING! Language {LANG} not supported for the interface. Using English instead")
MSG: dict[str, str] = LANG_DICT[LANG]
def release_whisper():
"""
Release the whisper model from memory.
"""
global g_model, g_params
del g_model
if g_params.get("device", None) == "gpu":
torch.cuda.empty_cache()
else:
gc.collect()
g_model = None
print(MSG["whisper_released"])
def release_align():
"""
Release the alignment model from memory.
"""
global g_model_a, g_params
del g_model_a
if g_params.get("device", None) == "gpu":
torch.cuda.empty_cache()
else:
gc.collect()
g_model_a = None
print(MSG["align_released"])
def release_memory_models():
"""
Release both models from memory.
"""
global g_model, g_model_a, g_params
del g_model, g_model_a
if g_params.get("device", None) == "gpu":
torch.cuda.empty_cache()
else:
gc.collect()
g_model = None
g_model_a = None
print(MSG["both_released"])
def get_args_str(func: Callable) -> list:
"""
Get the names of the arguments of a function.
"""
return list(inspect.signature(func).parameters)
def get_params(
func: Callable,
values: list
) -> dict:
"""
Get the parameters of a function as a dictionary.
"""
keys = get_args_str(func)
return {k: values[k] for k in keys}
def same_params(
params1: dict,
params2: dict,
*args
) -> bool:
"""
Check if two sets of parameters are the same.
If args are provided, only check the specified parameters.
"""
if args:
return all(params1.get(arg, None) == params2.get(arg, None) for arg in args)
else:
return params1 == params2
def transcribe_whisperx(
model_name: str,
audio_path: str,
micro_audio: tuple,
device: str,
batch_size: int,
compute_type: str,
language: str,
chunk_size: int,
beam_size: int,
release_memory: bool,
save_root: Optional[str],
save_audio: bool,
save_transcription: bool,
save_alignments: bool,
save_in_subfolder: bool,
preserve_name: bool,
alignments_format: str
) -> Tuple[str, str, str, str]:
"""
Transcribe an audio file using the WhisperX model.
Returns the transcription and sentence-level alignments.
"""
print(MSG["inputs_received"])
if device == "gpu":
device = "cuda"
params = get_params(transcribe_whisperx, locals())
global g_model, g_params
if not same_params(params, g_params, "language"):
print(MSG["lang_changed"])
release_align()
if not same_params(params, g_params, "model_name", "device", "compute_type", "beam_size") or g_model is None:
if g_model is not None:
print(MSG["params_changed"])
release_whisper()
print(MSG["loading_model"])
blockPrint()
g_model = whisperx.load_model(model_name, device, compute_type=compute_type, asr_options={"beam_size": beam_size}, download_root="models/whisperx")
enablePrint()
g_params = params
return _transcribe()
def transcribe_custom(
model_name: str,
audio_path: str,
micro_audio: tuple,
device: str,
batch_size: int,
compute_type: str,
language: str,
chunk_size: int,
beam_size: int,
release_memory: bool,
save_root: Optional[str],
save_audio: bool,
save_transcription: bool,
save_alignments: bool,
save_in_subfolder: bool,
preserve_name: bool,
alignments_format: str
) -> Tuple[str, str, str, str]:
"""
Transcribe an audio file using a custom Whisper model.
Returns the transcription and sentence-level alignments.
"""
print(MSG["inputs_received"])
if device == "gpu":
device = "cuda"
params = get_params(transcribe_custom, locals())
global g_model, g_params
if not same_params(params, g_params, "language", "device"):
print(MSG["lang_changed"])
release_align()
if not same_params(params, g_params, "model_name", "device", "compute_type", "beam_size") or g_model is None:
if g_model is not None:
print(MSG["params_changed"])
release_memory_models()
print(MSG["loading_model"])
blockPrint()
g_model = load_custom_model(model_name, device, compute_type=compute_type, beam_size=beam_size, download_root="models/custom")
enablePrint()
g_params = params
return _transcribe()
def _transcribe() -> Tuple[str, str, str, str]:
"""
Transcribe the audio file using the Whisper model.
Models and parameters should be loaded and stored globally before calling this function.
Returns the transcription and sentence-level alignments.
"""
global g_model, g_model_a, g_model_a_metadata, g_params
# Create save folder
save_dir = None
if not os.path.exists("temp"):
os.makedirs("temp")
if g_params["save_audio"] or g_params["save_transcription"] or g_params["save_alignments"]:
if g_params["save_root"] is not None and g_params["save_root"] != "":
save_root = g_params["save_root"]
else:
save_root = "outputs"
if g_params["save_in_subfolder"]:
save_dir = create_save_folder(save_root)
else:
save_dir = save_root
# Load (and save) audio
audio = load_and_save_audio(g_params["audio_path"], g_params["micro_audio"], g_params["save_audio"], save_dir, g_params["preserve_name"])
# Transcription
if g_params["language"] == "auto":
language = None
else:
language = g_params["language"]
time_transcribe = time.time()
print(MSG["starting_transcription"])
result = g_model.transcribe(audio, batch_size=g_params["batch_size"], language=language, chunk_size=g_params["chunk_size"], print_progress=True)
if "time" in result.keys():
time_transcribe = result["time"]
else:
time_transcribe = time.time() - time_transcribe
joined_text = " ".join([segment["text"].strip() for segment in result["segments"]])
if g_params["save_transcription"]:
if g_params["preserve_name"]:
audio_name = os.path.basename(g_params["audio_path"]).split(".")[0]
save_name = f"{audio_name}_transcription.txt"
else:
save_name = "transcription.txt"
save_transcription_to_txt(joined_text, save_dir, save_name)
if g_params["release_memory"]:
release_whisper()
# Word-level alignment
lang_used = result["language"]
if lang_used not in ALIGN_LANGS:
print(MSG["align_lang_not_supported"].format(lang_used))
lang_used = "en"
if g_model_a is None:
print(MSG["loading_align_model"])
g_model_a, g_model_a_metadata = whisperx.load_align_model(language_code=lang_used, device=g_params["device"], model_dir="models/alignment")
print(MSG["aligning"])
time_align = time.time()
aligned_result = whisperx.align(result["segments"], g_model_a, g_model_a_metadata, audio, g_params["device"], return_char_alignments=False)
time_align = time.time() - time_align
if g_params["save_alignments"]:
align_format = g_params["alignments_format"].lower()
if g_params["preserve_name"]:
audio_name = os.path.basename(g_params["audio_path"]).split(".")[0]
save_name = f"{audio_name}_timestamps." + align_format
else:
save_name = "timestamps." + align_format
if align_format == "json":
save_alignments_to_json(aligned_result, save_dir, save_name)
elif align_format == "srt":
subtitles = alignments2subtitles(aligned_result["segments"], max_line_length=50)
save_subtitles_to_srt(subtitles, save_dir, save_name)
if g_params["release_memory"]:
release_align()
print(MSG["done"])
if not os.listdir("temp") and os.path.exists("temp"):
# Remove temp folder if empty
os.rmdir("temp")
# Return the transcription and sentence-level alignments
return joined_text, format_alignments(aligned_result), f"{round(time_transcribe, 3)}s", f"{round(time_align, 3)}s"
# Prepare interface data
whisperx_models = ["large-v3", "large-v2", "large-v1", "medium", "small", "base", "tiny", "medium.en", "small.en", "base.en", "tiny.en"]
custom_models = list_models()
whisperx_langs = ["auto", "en", "es", "fr", "de", "it", "ja", "zh", "nl", "uk", "pt"]
custom_langs = ["auto"] + list(LANG_CODES.keys())
# Read config
gpu_support, error = read_config_value("gpu_support")
if gpu_support in ("cuda", "rocm"):
device = "gpu"
device_interactive = True
device_message = ""
else:
device = "cpu"
device_interactive = False
if gpu_support is None:
device_message = MSG["select_cpu"]
else:
device_message = MSG["gpu_disabled"]
def apply_config(lang: str):
prev_lang, error = read_config_value("language")
prev_lang = prev_lang if not error else LANG
write_config_value("language", lang)
if lang != prev_lang:
gr.Info(MSG["settings_updated"])
# Gradio interface
with gr.Blocks(title="Whisper GUI") as demo:
gr.Markdown(f"""# Whisper GUI
{MSG["gui_description"]}""")
with gr.Tab("Faster Whisper"):
with gr.Row():
with gr.Column():
model_select = gr.Dropdown(whisperx_models, value="base", label=MSG["model_select_label"], info=MSG["change_whisper_reload"])
with gr.Group():
audio_upload = gr.Audio(sources=["upload"], type="filepath", label=MSG["audio_upload_label"])
audio_record = gr.Audio(sources=["microphone"], type="numpy", label=MSG["audio_record_label"])
save_audio = gr.Checkbox(value=False, label=MSG["save_audio_label"], info=MSG["save_audio_info"])
gr.Examples(examples=["examples/coffe_break_example.mp3"], inputs=audio_upload)
with gr.Accordion(label=MSG["advanced_options"], open=False):
language_select = gr.Dropdown(whisperx_langs, value = "auto", label=MSG["language_select_label"], info=MSG["language_select_info"]+MSG["change_align_reload"])
device_select = gr.Radio(["gpu", "cpu"], value = device, label=MSG["device_select_label"], info=device_message+MSG["change_both_reload"], interactive=device_interactive)
with gr.Group():
with gr.Row():
save_transcription = gr.Checkbox(value=True, label=MSG["save_transcription_label"])
save_alignments = gr.Checkbox(value=True, label=MSG["save_align_label"])
save_root = gr.Textbox(label=MSG["save_root_label"], placeholder="outputs", lines=1)
save_in_subfolder = gr.Checkbox(value=True, label=MSG["save_subfolder_label"], info=MSG["save_subfolder_info"])
preserve_name = gr.Checkbox(value=False, label=MSG["preserve_name_label"], info=MSG["preserve_name_info"])
alignments_format = gr.Radio(["JSON", "SRT"], value="JSON", label=MSG["align_format_label"], interactive=True)
gr.Markdown(f"""### {MSG["optimizations"]}""")
compute_type_select = gr.Radio(["int8", "float16", "float32"], value = "int8", label=MSG["compute_type_label"], info=MSG["compute_type_info"]+MSG["change_whisper_reload"])
batch_size_slider = gr.Slider(1, 128, value = 1, step=1, label=MSG["batch_size_label"], info=MSG["batch_size_info"])
chunk_size_slider = gr.Slider(1, 80, value = 20, step=1, label=MSG["chunk_size_label"], info=MSG["chunk_size_info"])
beam_size_slider = gr.Slider(1, 100, value = 5, step=1, label=MSG["beam_size_label"], info=MSG["beam_size_info"]+MSG["change_whisper_reload"])
release_memory_checkbox = gr.Checkbox(label=MSG["release_memory_label"], value=True, info=MSG["release_memory_info"])
submit_button = gr.Button(value=MSG["submit_button"])
with gr.Column():
transcription_output = gr.Textbox(label=MSG["transcription_textbox"], lines=15)
alignments_output = gr.Textbox(label=MSG["align_textbox"], lines=15)
with gr.Row():
time_transcribe = gr.Textbox(label=MSG["time_transcribe_label"], info=MSG["time_transcribe_info"], lines=1)
time_align = gr.Textbox(label=MSG["time_align_label"], lines=1)
release_memory_button = gr.Button(value=MSG["release_memory_button"])
with gr.Tab("Custom model"):
with gr.Row():
with gr.Column():
with gr.Group():
model_select2 = gr.Dropdown(custom_models, value=None, label=MSG["model_select2_label"], allow_custom_value=True, info=MSG["change_whisper_reload"])
with gr.Group():
audio_upload2 = gr.Audio(sources=["upload"], type="filepath", label=MSG["audio_upload_label"])
audio_record2 = gr.Audio(sources=["microphone"], type="numpy", label=MSG["audio_record_label"])
save_audio2 = gr.Checkbox(value=False, label=MSG["save_audio_label"], info=MSG["save_audio_info"])
gr.Examples(examples=["examples/coffe_break_example.mp3"], inputs=audio_upload2)
with gr.Accordion(label=MSG["advanced_options"], open=False):
language_select2 = gr.Dropdown(custom_langs, value = "auto", label="Language", info=MSG["language_select_info"]+MSG["change_align_reload"])
device_select2 = gr.Radio(["gpu", "cpu"], value = device, label=MSG["device_select_label"], info=device_message+MSG["change_both_reload"], interactive=device_interactive)
with gr.Group():
with gr.Row():
save_transcription2 = gr.Checkbox(value=True, label=MSG["save_transcription_label"])
save_alignments2 = gr.Checkbox(value=True, label=MSG["save_align_label"])
save_root2 = gr.Textbox(label=MSG["save_root_label"], placeholder="outputs", lines=1)
save_in_subfolder2 = gr.Checkbox(value=True, label=MSG["save_subfolder_label"], info=MSG["save_subfolder_info"])
preserve_name2 = gr.Checkbox(value=False, label=MSG["preserve_name_label"], info=MSG["preserve_name_info"])
alignments_format2 = gr.Radio(["JSON", "SRT"], value="JSON", label=MSG["align_format_label"], interactive=True)
gr.Markdown(f"""### {MSG["optimizations"]}""")
compute_type_select2 = gr.Radio(["float16", "float32"], value = "float16", label=MSG["compute_type_label"], info=MSG["compute_type_info"]+MSG["change_whisper_reload"])
batch_size_slider2 = gr.Slider(1, 128, value = 1, step=1, label=MSG["batch_size_label"], info=MSG["batch_size_info"])
chunk_size_slider2 = gr.Slider(1, 80, value = 20, step=1, label=MSG["chunk_size_label"], info=MSG["chunk_size_info"])
beam_size_slider2 = gr.Slider(1, 100, value = 5, step=1, label=MSG["beam_size_label"], info=MSG["beam_size_info"]+MSG["change_whisper_reload"])
release_memory_checkbox2 = gr.Checkbox(label=MSG["release_memory_label"], value=True, info=MSG["release_memory_info"])
submit_button2 = gr.Button(value=MSG["submit_button"])
with gr.Column():
transcription_output2 = gr.Textbox(label=MSG["transcription_textbox"], lines=15)
alignments_output2 = gr.Textbox(label=MSG["align_textbox"], lines=15)
with gr.Row():
time_transcribe2 = gr.Textbox(label=MSG["time_transcribe_label"], info=MSG["time_transcribe_info"], lines=1)
time_align2 = gr.Textbox(label=MSG["time_align_label"], lines=1)
release_memory_button2 = gr.Button(value=MSG["release_memory_button"])
with gr.Tab("Settings"):
lang_select = gr.Dropdown(LANG_DICT.keys(), value=LANG, label=MSG["lang_select_label"], allow_custom_value=True, info=MSG["lang_select_info"])
apply_button = gr.Button(value=MSG["apply_changes"])
submit_button.click(transcribe_whisperx,
inputs=[model_select, audio_upload, audio_record, device_select, batch_size_slider, compute_type_select, language_select, chunk_size_slider, beam_size_slider, release_memory_checkbox, save_root, save_audio, save_transcription, save_alignments, save_in_subfolder, preserve_name, alignments_format],
outputs=[transcription_output, alignments_output, time_transcribe, time_align])
submit_button2.click(transcribe_custom,
inputs=[model_select2, audio_upload2, audio_record2, device_select2, batch_size_slider2, compute_type_select2, language_select2, chunk_size_slider2, beam_size_slider2, release_memory_checkbox2, save_root2, save_audio2, save_transcription2, save_alignments2, save_in_subfolder2, preserve_name2, alignments_format2],
outputs=[transcription_output2, alignments_output2, time_transcribe2, time_align2])
release_memory_button.click(release_memory_models)
release_memory_button2.click(release_memory_models)
apply_button.click(apply_config, inputs=[lang_select])
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser(description=MSG["argparse_description"])
parser.add_argument("--autolaunch", action="store_true", default=False, help=MSG["autloaunch_help"])
parser.add_argument("--share", action="store_true", default=False, help=MSG["share_help"])
args = parser.parse_args()
# Launch the interface
print(MSG["creating_interface"])
demo.launch(inbrowser=args.autolaunch, share=args.share)