-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlearn.lua
81 lines (71 loc) · 2.2 KB
/
learn.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
learn = {}
learn.model = {}
learn.layer = {}
learn.transfer = {}
learn.criterion = {}
-- Returns a random sample of a gaussian distribution
function learn.gaussian(mean, sd)
return math.sqrt(-2 * math.log(math.random())) * math.cos(2 * math.pi * math.random()) * sd + mean
end
require("learn/tensor")
require("learn/model")
require("learn/layer")
require("learn/transfer")
require("learn/criterion")
function learn.normalize(samples)
local max = 0
for i, vector in ipairs(samples) do
for j, v in ipairs(vector) do
max = math.max(max, math.abs(v))
end
end
if max > 0 then
for i, vector in ipairs(samples) do
for j, v in ipairs(vector) do
vector[j] = vector[j] / max
end
end
end
return max
end
function learn.unormalize(samples, max)
for i, vector in ipairs(samples) do
for j, v in ipairs(vector) do
vector[j] = vector[j] * max
end
end
end
-- Runs all unit tests
function learn.test()
local identity = learn.tensor({data = {1, 0, 0, 1}, size = {2, 2}})
local test = learn.tensor({data = {1, 2, 3, 4, 5, 6}, size = {2, 3}})
-- identity.dot(test).print()
-- print(test.string())
-- print(test.transpose().string())
-- XOR training data
-- local train_features = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}
-- local train_labels = {{0}, {1}, {1}, {0}}
local train_features = {{0, 0}, {0, 1}, {1, 0}, {-1, -1}}
local train_labels = {{0, 0}, {0, 1}, {1, 0}, {3, 3}}
-- local train_labels = {{0}, {0.1}, {0.3}, {-3.0}}
local n_input = #train_features[1]
local n_output = #train_labels[1]
local model = learn.model.nnet({modules = {
learn.layer.linear({n_input = n_input, n_output = n_input * 3}),
learn.transfer.tanh({}),
learn.layer.linear({n_input = n_input * 3, n_output = n_output}),
learn.transfer.tanh({}),
-- learn.layer.linear({n_input = n_output, n_output = n_output}),
-- learn.transfer.sigmoid({}),
}})
--
-- local epochs = 1000
-- local learning_rate = 0.5
-- local error = model.fit(train_features, train_labels, epochs, learning_rate, true)
--
-- local predictions = model.predict(train_features)
--
-- for _, prediction in pairs(predictions) do
-- print(table.concat(prediction, ", "))
-- end
end