-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode (MATLAB).m
318 lines (249 loc) · 13 KB
/
Code (MATLAB).m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
%Pouria Motahhari (99171099)
clc
clear
%% global parameters (SI Unit)
k=0.223;
cp=3600;
rho=720;
L=14;
alpha_=k/(cp*rho);
bread_l=0.5;
bread_w=0.1;
bread_h=0.005;
bread_v=bread_h*bread_w*bread_l;
q_dot=1350/bread_v;
q_w=20000;
h=2.41;
beta_=h/(cp*rho);
T_amb=inline('(-250/7)*abs(x-7)+300'); %linear relation with x
%T_amb=inline('(-250/49)*(x-7)^2+300'); %parabolic relation with x (we can use both)
%Const. Temp. in width thus we use 2d mesh:
m=25;
n=11;
delta_x=bread_l/m;
delta_y=bread_h/n;
%---radiation constant: ( hr=sigma*epsilon*(Tw^2+Tsur^2)*(Tw+Tsur) )
%assumptions: (sigma=Stefan–Boltzmann constant=5.699*10^-8)
%in hr: Tw=200C or Tw=473K and Tsur=25C or 298K
%the bread is a dark matter (epsilon = 1)
hr=5.699*10^-8*1*(473^2+298^2)*(473+298);
gamma_=hr/(cp*rho);
%%------------------------------------filling matrix in eq.:(C*t_new=A):
u=0.5; %assumed
taw=1; %time step
t_first=25; %temp. of bread in time=0
T_minimum=25;
%we use these constants to make our matrix smaller and better to read:
rx=alpha_*taw/delta_x^2;
ry=alpha_*taw/delta_y^2;
sx=beta_*taw/delta_x;
sy=beta_*taw/delta_y;
%%to calculate the temperatures with radiations, uncomment the following terms:
gx=0;%gamma_*taw/delta_x;
gy=0;%gamma_*taw/delta_y;
q_dot_mesh= q_dot*taw/(rho*cp); %*in presentation*
q_w_mesh=q_w*taw/(rho*cp*delta_y); %*in presentation*
C=zeros(m*n); %-------------------------constants matrix
A=zeros(m*n,1);%------------------------knowns matrix
while T_minimum<=200 || T_minimum>=201
% if T_minimum<=200 %method 1
% u=u-0.01;
% else
% u=u+0.01;
% end
u=sqrt(T_minimum/200)*u; %method 2
%both methods work and can be used (depends on the first assumption)
t_new= zeros(m*n,1);%--------unknowns matrix
for counter=1:L/(u*taw)
for M=1:m
for N=1:n
k=(M-1)*n+N;%its T(m,n) in a non square matrix (*in presentation*)
x=u*taw; %position x difference in one timestep (left side of the bread)
if N==1
if M==1 %top left corner (edge of bread) node of mesh
A(k)= t_new(k)+ (rx/2)*(t_new(M*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)-t_new(k))+ q_dot_mesh+ (sx/4)*( T_amb(counter*x)-T_amb((counter+1)*x)-t_new(k) )+ (sy/4)*( T_amb(counter*x)-t_new(k)-T_amb((counter+1)*x) )- (gx/4)*t_new(k)- (gy/4)*t_new(k);
C(k,k)=1+rx/2+ry/2-sy/4-sx/4+gy/4+gx/4;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
elseif M==m %top right corner (edge of bread) node
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)-t_new(k))+ q_dot_mesh+ (sx/4)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )+ (sy/4)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )- (gx/4)*t_new(k)- (gy/4)*t_new(k);
C(k,k)=1+rx/2+ry/2-sy/4-sx/4+gy/4+gx/4;
C(k,k+1)= -ry/2;
C(k,(M-2)*n+N)= -rx/2;
else %top side (surface of bread) nodes of mesh
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)+t_new(M*n+N)-2*t_new(k))+ (ry/2)*(t_new(k+1)-t_new(k))+ q_dot_mesh+ (sy/2)*( T_amb(counter*x+M*delta_x)-T_amb((counter+1)*x+M*delta_x)-t_new(k) )- (gy/2)*t_new(k); %*in presentation*
C(k,k)=1+rx+ry/2-sy/2+gy/2;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
C(k,(M-2)*n+N)= -rx/2;
end
elseif N==n
if M==1 %bottom left corner (edge of bread) node
A(k)= t_new(k)+ (rx/2)*(t_new(M*n+N)-t_new(k))+ (ry/2)*(t_new(k-1)-t_new(k))+ q_dot_mesh+ q_w_mesh/2+ (sx/4)*( T_amb(counter*x)-T_amb((counter+1)*x)-t_new(k) )- (gx/4)*t_new(k); %t_counter*x is the x (range(x)=0:14) on the oven
C(k,k)=1+rx/2+ry/2-sx/4+gx/4;
C(k,k-1)= -ry/2;
C(k,M*n+N)= -rx/4;
elseif M==m %bottom right corner (edge of bread) node
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)-t_new(k))+ (ry/2)*(t_new(k-1)-t_new(k))+ q_dot_mesh+ q_w_mesh/2+ (sx/4)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )- (gx/4)*t_new(k); %M=m therefore the node is at the end of the bread
C(k,k)=1+rx/2+ry/2-sx/4+gx/4;
C(k,k-1)= -ry/2;
C(k,(M-2)*n+N)= -rx/2;
else %bottom side (surface of bread that is on the oven) nodes
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)+t_new(M*n+N)-2*t_new(k))+ (ry/2)*(t_new(k-1)-t_new(k))+ q_dot_mesh+ q_w_mesh;
C(k,k)=1+rx+ry/2;
C(k,k-1)= -ry/2;
C(k,M*n+N)= -rx/2;
C(k,(M-2)*n+N)= -rx/2;
end
elseif M==1 %left side (vertical surface of bread) nodes
A(k)= t_new(k)+ (rx/2)*(t_new(M*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)+t_new(k-1)-2*t_new(k))+ q_dot_mesh+ (sx/2)*( T_amb(counter*x)-T_amb((counter+1)*x)-t_new(k) )- (gx/2)*t_new(k);
C(k,k)=1+rx/2+ry-sx/2+gx/2;
C(k,k-1)= -ry/2;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
elseif M==m %right side nodes
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)+t_new(k-1)-2*t_new(k))+ q_dot_mesh+ (sx/2)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )- (gx/2)*t_new(k);
C(k,k)=1+rx/2+ry-sx/2+gx/2;
C(k,k-1)= -ry/2;
C(k,k+1)= -ry/2;
C(k,(M-2)*n+N)= -rx/2;
else %center nodes of mesh
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)+t_new(M*n+N)-2*t_new(k))+ (ry/2)*(t_new(k+1)+t_new(k-1)-2*t_new(k))+ q_dot_mesh;
C(k,k)=1+rx+ry;
C(k,k-1)= -ry/2;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
C(k,(M-2)*n+N)= -rx/2;
end
end
end
%Gauss-Seidel method-----------------------------------------
si=size(t_new,1);
normVal=Inf;
nmax=1000; %number of maximum iterations which can be reached
tol=0.001; %Tolerence
iter=0;
while normVal>tol && iter<nmax
t_old=t_new;
for i=1:si
guess=0;
for j=1:i-1
guess=guess+C(i,j)*t_new(j);
end
for j=i+1:si
guess=guess+C(i,j)*t_old(j);
end
t_new(i)=(1/C(i,i))*(A(i)-guess);
end
iter=iter+1;
normVal=norm(t_old-t_new);
end %end of Gauss-Seidel method------------------------------
end
T_minimum=min(t_new);
%disp(['at t= ' num2str(counter) ' : T_min= ' num2str(T_minimum)])
end
disp(['velocity(u) = ' num2str(u)])
bread_mesh=zeros(n,m); %temperature distribution on bread mesh (right view)
for j=1:m*n
bread_mesh(j)=t_new(j);
end
%%third problem: t-x (at y=0.25cm and in the middle of furnace) plotting:
x_axis=0:bread_l/(m-1):bread_l; %x axis of the plot (x) *length issue will be presented*
%these are the same codes from line 74 to 153 except its meant to be used
%on L=7 the middle of the furnace:
t_new=t_first+ zeros(m*n,1);
for counter=1:L/(u*taw*2)
for M=1:m
for N=1:n
k=(M-1)*n+N;
x=u*taw;
if N==1
if M==1 %top left corner (edge of bread) node of mesh
A(k)= t_new(k)+ (rx/2)*(t_new(M*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)-t_new(k))+ q_dot_mesh+ (sx/4)*( T_amb(counter*x)-T_amb((counter+1)*x)-t_new(k) )+ (sy/4)*( T_amb(counter*x)-t_new(k)-T_amb((counter+1)*x) )- (gx/4)*t_new(k)- (gy/4)*t_new(k);
C(k,k)=1+rx/2+ry/2-sy/4-sx/4+gy/4+gx/4;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
elseif M==m %top right corner (edge of bread) node
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)-t_new(k))+ q_dot_mesh+ (sx/4)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )+ (sy/4)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )- (gx/4)*t_new(k)- (gy/4)*t_new(k);
C(k,k)=1+rx/2+ry/2-sy/4-sx/4+gy/4+gx/4;
C(k,k+1)= -ry/2;
C(k,(M-2)*n+N)= -rx/2;
else %top side (surface of bread) nodes of mesh
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)+t_new(M*n+N)-2*t_new(k))+ (ry/2)*(t_new(k+1)-t_new(k))+ q_dot_mesh+ (sy/2)*( T_amb(counter*x+M*delta_x)-T_amb((counter+1)*x+M*delta_x)-t_new(k) )- (gy/2)*t_new(k); %*in presentation*
C(k,k)=1+rx+ry/2-sy/2+gy/2;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
C(k,(M-2)*n+N)= -rx/2;
end
elseif N==n
if M==1 %bottom left corner (edge of bread) node
A(k)= t_new(k)+ (rx/2)*(t_new(M*n+N)-t_new(k))+ (ry/2)*(t_new(k-1)-t_new(k))+ q_dot_mesh+ q_w_mesh/2+ (sx/4)*( T_amb(counter*x)-T_amb((counter+1)*x)-t_new(k) )- (gx/4)*t_new(k); %t_counter*x is the x (range(x)=0:14) on the oven
C(k,k)=1+rx/2+ry/2-sx/4+gx/4;
C(k,k-1)= -ry/2;
C(k,M*n+N)= -rx/4;
elseif M==m %bottom right corner (edge of bread) node
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)-t_new(k))+ (ry/2)*(t_new(k-1)-t_new(k))+ q_dot_mesh+ q_w_mesh/2+ (sx/4)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )- (gx/4)*t_new(k); %M=m therefore the node is at the end of the bread
C(k,k)=1+rx/2+ry/2-sx/4+gx/4;
C(k,k-1)= -ry/2;
C(k,(M-2)*n+N)= -rx/2;
else %bottom side (surface of bread that is on the oven) nodes
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)+t_new(M*n+N)-2*t_new(k))+ (ry/2)*(t_new(k-1)-t_new(k))+ q_dot_mesh+ q_w_mesh;
C(k,k)=1+rx+ry/2;
C(k,k-1)= -ry/2;
C(k,M*n+N)= -rx/2;
C(k,(M-2)*n+N)= -rx/2;
end
elseif M==1 %left side (vertical surface of bread) nodes
A(k)= t_new(k)+ (rx/2)*(t_new(M*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)+t_new(k-1)-2*t_new(k))+ q_dot_mesh+ (sx/2)*( T_amb(counter*x)-T_amb((counter+1)*x)-t_new(k) )- (gx/2)*t_new(k);
C(k,k)=1+rx/2+ry-sx/2+gx/2;
C(k,k-1)= -ry/2;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
elseif M==m %right side nodes
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)-t_new(k))+ (ry/2)*(t_new(k+1)+t_new(k-1)-2*t_new(k))+ q_dot_mesh+ (sx/2)*( T_amb(counter*x+bread_l)-T_amb((counter+1)*x+bread_l)-t_new(k) )- (gx/2)*t_new(k);
C(k,k)=1+rx/2+ry-sx/2+gx/2;
C(k,k-1)= -ry/2;
C(k,k+1)= -ry/2;
C(k,(M-2)*n+N)= -rx/2;
else %center nodes of mesh
A(k)= t_new(k)+ (rx/2)*(t_new((M-2)*n+N)+t_new(M*n+N)-2*t_new(k))+ (ry/2)*(t_new(k+1)+t_new(k-1)-2*t_new(k))+ q_dot_mesh;
C(k,k)=1+rx+ry;
C(k,k-1)= -ry/2;
C(k,k+1)= -ry/2;
C(k,M*n+N)= -rx/2;
C(k,(M-2)*n+N)= -rx/2;
end
end
end
%Gauss-Seidel method-----------------------------------------
si=size(t_new,1);
normVal=Inf;
nmax=1000; %number of maximum iterations which can be reached
tol=0.001; %Tolerence
iter=0;
while normVal>tol && iter<nmax
t_old=t_new;
for i=1:si
guess=0;
for j=1:i-1
guess=guess+C(i,j)*t_new(j);
end
for j=i+1:si
guess=guess+C(i,j)*t_old(j);
end
t_new(i)=(1/C(i,i))*(A(i)-guess);
end
iter=iter+1;
normVal=norm(t_old-t_new);
end %end of Gauss-Seidel method------------------------------
end
bread_mesh_half_furnace=zeros(n,m); %temperature distribution on bread mesh in x=L/2=7 (right view)
for j=1:m*n
bread_mesh_half_furnace(j)=t_new(j);
end
y_axis=bread_mesh_half_furnace((n+1)/2,:); %y axis of the plot (Temperature) ((n+1)/2: odd numbers of vertical nodes)
plot(x_axis,y_axis,'b','LineWidth',2)
grid on
xlabel('x (m)')
ylabel('Temperature (°C)')
title('t-x diagram (at y=0.25cm and in the middle of furnace)')