-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathPan_tompkins_algorithm.py
148 lines (99 loc) · 4.53 KB
/
Pan_tompkins_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
######################################
# Pan–Tompkins algorithm in python #
# Author: Pramod kumar Chinthala #
# #
######################################
import numpy as np
from scipy.signal import butter, filtfilt
class Pan_tompkins:
""" Implementationof Pan Tompkins Algorithm.
Noise cancellation (bandpass filter) -> Derivative step -> Squaring and integration.
Params:
data (array) : ECG data
sampling rate (int)
returns:
Integrated signal (array) : This signal can be used to detect peaks
----------------------------------------
HOW TO USE ?
Eg.
ECG_data = [4, 7, 80, 78, 9], sampling =2000
call :
signal = Pan_tompkins(ECG_data, sampling).fit()
----------------------------------------
"""
def __init__(self, data, sample_rate):
self.data = data
self.sample_rate = sample_rate
def fit(self, normalized_cut_offs=None, butter_filter_order=2, padlen=150, window_size=None):
''' Fit the signal according to algorithm and returns integrated signal
'''
# 1.Noise cancellationusing bandpass filter
self.filtered_BandPass = self.band_pass_filter(normalized_cut_offs, butter_filter_order, padlen)
# 2.derivate filter to get slpor of the QRS
self.derviate_pass = self.derivative_filter()
# 3.Squaring to enhance dominant peaks in QRS
self.square_pass = self.squaring()
# 4.To get info about QRS complex
self.integrated_signal = self.moving_window_integration( window_size)
return self.integrated_signal
def band_pass_filter(self, normalized_cut_offs=None, butter_filter_order=2, padlen=150):
''' Band pass filter for Pan tompkins algorithm
with a bandpass setting of 5 to 20 Hz
params:
normalized_cut_offs (list) : bandpass setting canbe changed here
bandpass filte rorder (int) : deffault 2
padlen (int) : padding length for data , default = 150
scipy default value = 2 * max(len(a coeff, b coeff))
return:
filtered_BandPass (array)
'''
# Calculate nyquist sample rate and cutoffs
nyquist_sample_rate = self.sample_rate / 2
# calculate cutoffs
if normalized_cut_offs is None:
normalized_cut_offs = [5/nyquist_sample_rate, 15/nyquist_sample_rate]
else:
assert type(self.sample_rate ) is list, "Cutoffs should be a list with [low, high] values"
# butter coefficinets
b_coeff, a_coeff = butter(butter_filter_order, normalized_cut_offs, btype='bandpass')[:2]
# apply forward and backward filter
filtered_BandPass = filtfilt(b_coeff, a_coeff, self.data, padlen=padlen)
return filtered_BandPass
def derivative_filter(self):
''' Derivative filter
params:
filtered_BandPass (array) : outputof bandpass filter
return:
derivative_pass (array)
'''
# apply differentiation
derviate_pass= np.diff(self.band_pass_filter())
return derviate_pass
def squaring(self):
''' squaring application on derivate filter output data
params:
return:
square_pass (array)
'''
# apply squaring
square_pass= self.derivative_filter() **2
return square_pass
def moving_window_integration(self, window_size=None):
''' Moving avergae filter
Params:
window_size (int) : no. of samples to average, if not provided : 0.08 * sample rate
sample_rate (int) : should be given if window_size is not given
return:
integrated_signal (array)
'''
if window_size is None:
assert self.sample_rate is not None, "if window size is None, sampling rate should be given"
window_size = int(0.08 * int(self.sample_rate)) # given in paper 150ms as a window size
# define integrated signal
integrated_signal = np.zeros_like(self.squaring())
# cumulative sum of signal
cumulative_sum = self.squaring().cumsum()
# estimationof area/ integral below the curve deifnes the data
integrated_signal[window_size:] = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
integrated_signal[:window_size] = cumulative_sum[:window_size] / np.arange(1, window_size + 1)
return integrated_signal