-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathevaluate.py
57 lines (43 loc) · 2.12 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from torch.utils import data
from utils import config
# from network.model import Model
from network import dataset
from sklearn.metrics import recall_score
from focal_loss.focal_loss import FocalLoss
def evaluate(model, val_dataloader, criterion):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
val_accuracy = 0.0
val_loss = 0.0
y_preds = []
y_labels = []
with torch.no_grad():
for val_field, val_candidate, val_words, val_positions, masks, val_labels in val_dataloader:
val_field = val_field.to(device)
val_candidate = val_candidate.to(device)
val_words = val_words.to(device)
val_positions = val_positions.to(device)
masks = masks.to(device)
val_labels = val_labels.to(device)
val_outputs = model(val_field, val_candidate, val_words, val_positions, masks)
validation_loss = criterion(val_outputs, val_labels)
val_preds = val_outputs.round()
y_preds.extend(list(val_preds.cpu().detach().numpy().reshape(1, -1)[0]))
y_labels.extend(list(val_labels.cpu().detach().numpy().reshape(1, -1)[0]))
val_accuracy += torch.sum(val_preds == val_labels).item()
val_loss += validation_loss.item()
val_loss = val_loss / val_dataloader.sampler.num_samples
val_accuracy = val_accuracy / val_dataloader.sampler.num_samples
recall = recall_score(y_labels, y_preds)
return val_accuracy, val_loss, recall
if __name__ == '__main__':
doc_data = dataset.DocumentsDataset(split_name='val')
VOCAB_SIZE = len(doc_data.vocab)
test_data = data.DataLoader(doc_data, batch_size=config.BATCH_SIZE, shuffle=True)
# rlie = Model(VOCAB_SIZE, config.EMBEDDING_SIZE, config.NEIGHBOURS, config.HEADS)
# criterion = nn.BCELoss()
relie = torch.load('output/model.pth')
criterion = FocalLoss(alpha=2, gamma=5)
test_accuracy, test_loss, test_recall = evaluate(relie, test_data, criterion)
print(f"Test Accuracy: {test_accuracy} Test Loss: {test_loss} Test Recall: {test_recall}")