-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathRYB.cpp
247 lines (201 loc) · 8.01 KB
/
RYB.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// Art Colors by Eric J. Jenislawski
// Version 0.2
// Copyright 2020, Eric J. Jenislawski. Licensed under GNU General Public License version 3 or later.
#include "RYB.h"
#include <algorithm>
#include <cmath>
Color VecToCol(Vector3 in){
Color out=(Color){255*in.x,255*in.y,255*in.z,255};
return out;
}
Vector3 ColToVec(Color c) {
Vector3 out=(Vector3){(float)c.r/255.0f,(float)c.g/255.0f,(float)c.b/255.0f};
return out;
}
Color Saturate(Color in, float sat) {
if (fabs(sat)<0.004) {return in;} //Immediately return when sat is zero or so small no difference will result (less than 1/255)
if ((in.r==0)&&(in.g==0)&&(in.b==0)) {return in;} //Prevents division by zero trying to saturate black
Color out;
Vector3 clerp={(float)in.r/255.0f,(float)in.g/255.0f,(float)in.b/255.0f};
if (sat>0.0) {
Vector3 maxsat;
float mx=std::max(std::max(in.r,in.g),in.b);
mx/=255.0;
maxsat=Vector3Scale(clerp,1.0/mx);
clerp=Vector3Lerp(clerp,maxsat,sat);
}
if (sat<0.0) {
Vector3 grayc;
float avg=(float) (in.r+in.g+in.b);
avg/=(3.0*255.0);
grayc={avg,avg,avg};
clerp=Vector3Lerp(clerp,grayc,-1.0*sat);
}
out={255*clerp.x,255*clerp.y,255*clerp.z,255};
return out;
}
Color ColorBlindTransform(Color in, int CBtype) {
//Types 0=normal, 1=Protanopia, 2=Deuteranopia, 3=Tritanopia, 4=Achromatopsia
//Matrices taken from https://gist.github.com/Lokno/df7c3bfdc9ad32558bb7
Color out=BLACK;
switch(CBtype) {
case 0:
return in;
case 1:
out.r=in.r*0.567+in.g*0.433+in.b*0.000;
out.g=in.r*0.558+in.g*0.442+in.b*0.000;
out.b=in.r*0.000+in.g*0.242+in.b*0.758;
return out;
case 2:
out.r=in.r*0.625+in.g*0.375+in.b*0.000;
out.g=in.r*0.700+in.g*0.300+in.b*0.000;
out.b=in.r*0.000+in.g*0.300+in.b*0.700;
return out;
case 3:
out.r=in.r*0.950+in.g*0.050+in.b*0.000;
out.g=in.r*0.000+in.g*0.433+in.b*0.567;
out.b=in.r*0.000+in.g*0.475+in.b*0.525;
return out;
case 4:
out.r=in.r*0.299+in.g*0.587+in.b*0.114;
out.g=in.r*0.299+in.g*0.587+in.b*0.114;
out.b=in.r*0.299+in.g*0.587+in.b*0.114;
return out;
default:
return in;
}
return in;
}
Color Xform_RYB2RGB(int r, int y, int b) {
float rin=(float)r/255.0;
float yin=(float)y/255.0;
float bin=(float)b/255.0;
//The values defined here are where the magic happens. You can experiment with changing the values and see if you find a better set. If so, notify me on GitHub @ProfJski !
//I have included a few alternative sets below
//RYB corners in RGB values
//Values arranged to approximate an artist's color wheel
Vector3 CG000={0.0,0.0,0.0}; //Black
Vector3 CG100={1.0,0.0,0.0}; //Red
Vector3 CG010={0.9,0.9,0.0}; //Yellow = RGB Red+Green. Still a bit high, but helps Yellow compete against Green. Lower gives murky yellows.
Vector3 CG001={0.0,0.36,1.0}; //Blue: Green boost of 0.36 helps eliminate flatness of spectrum around pure Blue
Vector3 CG011={0.0,0.9,0.2}; //Green: A less intense green than {0,1,0}, which tends to dominate
Vector3 CG110={1.0,0.6,0.0}; //Orange = RGB full Red, 60% Green
Vector3 CG101={0.6,0.0,1.0}; //Purple = 60% Red, full Blue
Vector3 CG111={1.0,1.0,1.0}; //White
/*
//RYB corners in RGB values
//Values arranged to approximate an artist's color wheel
Vector3 CG000={0.0,0.0,0.0}; //Black
Vector3 CG100={1.0,0.0,0.0}; //Red
Vector3 CG010={0.9,0.9,0.0}; //Yellow = RGB Red+Green. Still a bit high, but helps Yellow compete against Green. Lower gives murky yellows.
Vector3 CG001={0.0,0.36,1.0}; //Blue: Green boost of 0.36 helps eliminate flatness of spectrum around pure Blue
Vector3 CG011={0.0,0.75,0.3}; //Green: A less intense green than {0,1,0}, which tends to dominate
Vector3 CG110={1.0,0.6,0.0}; //Orange = RGB full Red, 60% Green
Vector3 CG101={0.6,0.0,1.0}; //Purple = 60% Red, full Blue
Vector3 CG111={1.0,1.0,1.0}; //White
*/
/*
//RYB corners in RGB values
//Unbalanced corners: Less even hue distribution
Vector3 CG000={0.0,0.0,0.0}; //Black
Vector3 CG100={1.0,0.0,0.0}; //Red
Vector3 CG010={1.0,1.0,0.0}; //Yellow
Vector3 CG001={0.0,0.0,1.0}; //Blue:
Vector3 CG011={0.0,1.0,0.0}; //Green:
Vector3 CG110={1.0,0.5,0.0}; //Orange
Vector3 CG101={0.5,0.0,1.0}; //Purple
Vector3 CG111={1.0,1.0,1.0}; //White
*/
//Trilinear interpolation from RYB to RGB
Vector3 C00,C01,C10,C11;
C00=Vector3Add(Vector3Scale(CG000,1.0-rin),Vector3Scale(CG100,rin));
C01=Vector3Add(Vector3Scale(CG001,1.0-rin),Vector3Scale(CG101,rin));
C10=Vector3Add(Vector3Scale(CG010,1.0-rin),Vector3Scale(CG110,rin));
C11=Vector3Add(Vector3Scale(CG011,1.0-rin),Vector3Scale(CG111,rin));
Vector3 C0,C1;
C0=Vector3Add(Vector3Scale(C00,1.0-yin),Vector3Scale(C10,yin));
C1=Vector3Add(Vector3Scale(C01,1.0-yin),Vector3Scale(C11,yin));
Vector3 C;
C=Vector3Add(Vector3Scale(C0,1.0-bin),Vector3Scale(C1,bin));
Color CRGB={255*C.x,255*C.y,255*C.z,255};
return CRGB;
}
Color Xform_RGB2RYB(int r, int g, int b) {
float rin=(float)r/255.0;
float gin=(float)g/255.0;
float bin=(float)b/255.0;
//Finding the appropriate values for the inverse transform was no easy task. After some experimentation, I wrote a separate program that used
//the calculus of variations to help tweak my guesses towards values that provided a closer round-trip conversion from RGB to RYB to RGB again.
//RGB corners in RYB values
Vector3 CG000={0.0,0.0,0.0}; //Black
Vector3 CG100={0.891,0.0,0.0}; //Red
Vector3 CG010={0.0,0.714,0.374}; //Green = RYB Yellow + Blue
Vector3 CG001={0.07,0.08,0.893}; //Blue:
Vector3 CG011={0.0,0.116,0.313}; //Cyan = RYB Green + Blue. Very dark to make the rest of the function work correctly
Vector3 CG110={0.0,0.915,0.0}; //Yellow
Vector3 CG101={0.554,0.0,0.1}; //Magenta =RYB Red + Blue. Likewise dark.
Vector3 CG111={1.0,1.0,1.0}; //White
//Trilinear interpolation from RGB to RYB
Vector3 C00,C01,C10,C11;
C00=Vector3Add(Vector3Scale(CG000,1.0-rin),Vector3Scale(CG100,rin));
C01=Vector3Add(Vector3Scale(CG001,1.0-rin),Vector3Scale(CG101,rin));
C10=Vector3Add(Vector3Scale(CG010,1.0-rin),Vector3Scale(CG110,rin));
C11=Vector3Add(Vector3Scale(CG011,1.0-rin),Vector3Scale(CG111,rin));
Vector3 C0,C1;
C0=Vector3Add(Vector3Scale(C00,1.0-gin),Vector3Scale(C10,gin));
C1=Vector3Add(Vector3Scale(C01,1.0-gin),Vector3Scale(C11,gin));
Vector3 C;
C=Vector3Add(Vector3Scale(C0,1.0-bin),Vector3Scale(C1,bin));
Color CRYB=Saturate(VecToCol(C),0.5);
return CRYB;
}
Color ColorMix(Color a, Color b, float blend) {
Color out;
out.r=sqrt((1.0-blend)*(a.r*a.r)+blend*(b.r*b.r));
out.g=sqrt((1.0-blend)*(a.g*a.g)+blend*(b.g*b.g));
out.b=sqrt((1.0-blend)*(a.b*a.b)+blend*(b.b*b.b));
out.a=(1.0-blend)*a.a+blend*b.a;
return out;
}
Color ColorMixLin(Color a, Color b, float blend) {
Color out;
out.r=(1.0-blend)*a.r+blend*b.r;
out.g=(1.0-blend)*a.g+blend*b.g;
out.b=(1.0-blend)*a.b+blend*b.b;
out.a=(1.0-blend)*a.a+blend*b.a;
return out;
}
Color ColorInv(Color in) {
Color out={255-in.r,255-in.g,255-in.b,255};
return out;
}
Color Brighten(Color in, float bright) {
if (bright==0.0) {return in;}
Color out;
if (bright>0.0) {
out=ColorMix(in,WHITE,bright);
}
if (bright<0.0) {
out=ColorMix(in,BLACK,-1.0*bright);
}
return out;
}
float ColorDistance(Color a, Color b) {
float out=(float)((a.r-b.r)*(a.r-b.r)+(a.g-b.g)*(a.g-b.g)+(a.b-b.b)*(a.b-b.b));
out=sqrt(out)/(sqrt(3.0)*255); //scale to 0-1
return out;
}
Color ColorMixSub(Color a, Color b, float blend) {
Color out;
Color c,d,f;
c=ColorInv(a);
d=ColorInv(b);
f.r=std::max(0,255-c.r-d.r);
f.g=std::max(0,255-c.g-d.g);
f.b=std::max(0,255-c.b-d.b);
float cd=ColorDistance(a,b);
cd=4.0*blend*(1.0-blend)*cd;
out=ColorMixLin(ColorMixLin(a,b,blend),f,cd);
out.a=255;
return out;
}