-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG.py
389 lines (317 loc) · 15.7 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import tensorflow as tf
import numpy as np
import gym
import os
import shutil
np.random.seed(1)
tf.set_random_seed(1)
MAX_EPISODES = 2000
LR_A = 0.0005 # learning rate for actor
LR_C = 0.0005 # learning rate for critic
GAMMA = 0.999 # reward discount
REPLACE_ITER_A = 1700
REPLACE_ITER_C = 1500
MEMORY_CAPACITY = 200000
BATCH_SIZE = 32
DISPLAY_THRESHOLD = 100 # display until the running reward > 100
DATA_PATH = './data'
LOAD_MODEL = False
SAVE_MODEL_ITER = 100000
RENDER = False
OUTPUT_GRAPH = False
ENV_NAME = 'BipedalWalker-v2'
GLOBAL_STEP = tf.Variable(0, trainable=False)
INCREASE_GS = GLOBAL_STEP.assign(tf.add(GLOBAL_STEP, 1))
LR_A = tf.train.exponential_decay(LR_A, GLOBAL_STEP, 10000, .97, staircase=True)
LR_C = tf.train.exponential_decay(LR_C, GLOBAL_STEP, 10000, .97, staircase=True)
END_POINT = (200 - 10) * (14/30) # from game
env = gym.make(ENV_NAME)
env.seed(1)
STATE_DIM = env.observation_space.shape[0] # 24
ACTION_DIM = env.action_space.shape[0] # 4
ACTION_BOUND = env.action_space.high # [1, 1, 1, 1]
# all placeholder for tf
with tf.name_scope('S'):
S = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s')
with tf.name_scope('R'):
R = tf.placeholder(tf.float32, [None, 1], name='r')
with tf.name_scope('S_'):
S_ = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s_')
############################### Actor ####################################
class Actor(object):
def __init__(self, sess, action_dim, action_bound, learning_rate, t_replace_iter):
self.sess = sess
self.a_dim = action_dim
self.action_bound = action_bound
self.lr = learning_rate
self.t_replace_iter = t_replace_iter
self.t_replace_counter = 0
with tf.variable_scope('Actor'):
# input s, output a
self.a = self._build_net(S, scope='eval_net', trainable=True)
# input s_, output a, get a_ for critic
self.a_ = self._build_net(S_, scope='target_net', trainable=False)
self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/eval_net')
self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/target_net')
def _build_net(self, s, scope, trainable):
with tf.variable_scope(scope):
init_w = tf.random_normal_initializer(0., 0.01)
init_b = tf.constant_initializer(0.01)
net = tf.layers.dense(s, 500, activation=tf.nn.relu,
kernel_initializer=init_w, bias_initializer=init_b, name='l1', trainable=trainable)
net = tf.layers.dense(net, 200, activation=tf.nn.relu,
kernel_initializer=init_w, bias_initializer=init_b, name='l2', trainable=trainable)
with tf.variable_scope('a'):
actions = tf.layers.dense(net, self.a_dim, activation=tf.nn.tanh, kernel_initializer=init_w,
bias_initializer=init_b, name='a', trainable=trainable)
scaled_a = tf.multiply(actions, self.action_bound, name='scaled_a') # Scale output to -action_bound to action_bound
return scaled_a
def learn(self, s): # batch update
self.sess.run(self.train_op, feed_dict={S: s})
if self.t_replace_counter % self.t_replace_iter == 0:
self.sess.run([tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)])
self.t_replace_counter += 1
def choose_action(self, s):
s = s[np.newaxis, :] # single state
return self.sess.run(self.a, feed_dict={S: s})[0] # single action
def add_grad_to_graph(self, a_grads):
with tf.variable_scope('policy_grads'):
# ys = policy;
# xs = policy's parameters;
# self.a_grads = the gradients of the policy to get more Q
# tf.gradients will calculate dys/dxs with a initial gradients for ys, so this is dq/da * da/dparams
self.policy_grads_and_vars = tf.gradients(ys=self.a, xs=self.e_params, grad_ys=a_grads)
with tf.variable_scope('A_train'):
opt = tf.train.RMSPropOptimizer(-self.lr) # (- learning rate) for ascent policy
self.train_op = opt.apply_gradients(zip(self.policy_grads_and_vars, self.e_params), global_step=GLOBAL_STEP)
############################### Critic ####################################
class Critic(object):
def __init__(self, sess, state_dim, action_dim, learning_rate, gamma, t_replace_iter, a, a_):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.lr = learning_rate
self.gamma = gamma
self.t_replace_iter = t_replace_iter
self.t_replace_counter = 0
with tf.variable_scope('Critic'):
# Input (s, a), output q
self.a = a
self.q = self._build_net(S, self.a, 'eval_net', trainable=True)
# Input (s_, a_), output q_ for q_target
self.q_ = self._build_net(S_, a_, 'target_net', trainable=False) # target_q is based on a_ from Actor's target_net
self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net')
self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net')
with tf.variable_scope('target_q'):
self.target_q = R + self.gamma * self.q_
with tf.variable_scope('abs_TD'):
self.abs_td = tf.abs(self.target_q - self.q)
self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights')
with tf.variable_scope('TD_error'):
self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q))
with tf.variable_scope('C_train'):
self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=GLOBAL_STEP)
with tf.variable_scope('a_grad'):
self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim)
def _build_net(self, s, a, scope, trainable):
with tf.variable_scope(scope):
init_w = tf.random_normal_initializer(0., 0.01)
init_b = tf.constant_initializer(0.01)
with tf.variable_scope('l1'):
n_l1 = 700
# combine the action and states together in this way
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], initializer=init_w, trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], initializer=init_w, trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], initializer=init_b, trainable=trainable)
net = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
with tf.variable_scope('l2'):
net = tf.layers.dense(net, 20, activation=tf.nn.relu, kernel_initializer=init_w,
bias_initializer=init_b, name='l2', trainable=trainable)
with tf.variable_scope('q'):
q = tf.layers.dense(net, 1, kernel_initializer=init_w, bias_initializer=init_b, trainable=trainable) # Q(s,a)
return q
def learn(self, s, a, r, s_, ISW):
_, abs_td = self.sess.run([self.train_op, self.abs_td], feed_dict={S: s, self.a: a, R: r, S_: s_, self.ISWeights: ISW})
if self.t_replace_counter % self.t_replace_iter == 0:
self.sess.run([tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)])
self.t_replace_counter += 1
return abs_td
class SumTree(object):
"""
This SumTree code is modified version and the original code is from:
https://github.com/jaara/AI-blog/blob/master/SumTree.py
Story the data with it priority in tree and data frameworks.
"""
data_pointer = 0
def __init__(self, capacity):
self.capacity = capacity # for all priority values
self.tree = np.zeros(2 * capacity - 1)+1e-5
# [--------------Parent nodes-------------][-------leaves to recode priority-------]
# size: capacity - 1 size: capacity
self.data = np.zeros(capacity, dtype=object) # for all transitions
# [--------------data frame-------------]
# size: capacity
def add_new_priority(self, p, data):
leaf_idx = self.data_pointer + self.capacity - 1
self.data[self.data_pointer] = data # update data_frame
self.update(leaf_idx, p) # update tree_frame
self.data_pointer += 1
if self.data_pointer >= self.capacity: # replace when exceed the capacity
self.data_pointer = 0
def update(self, tree_idx, p):
change = p - self.tree[tree_idx]
self.tree[tree_idx] = p
self._propagate_change(tree_idx, change)
def _propagate_change(self, tree_idx, change):
"""change the sum of priority value in all parent nodes"""
parent_idx = (tree_idx - 1) // 2
self.tree[parent_idx] += change
if parent_idx != 0:
self._propagate_change(parent_idx, change)
def get_leaf(self, lower_bound):
leaf_idx = self._retrieve(lower_bound) # search the max leaf priority based on the lower_bound
data_idx = leaf_idx - self.capacity + 1
return [leaf_idx, self.tree[leaf_idx], self.data[data_idx]]
def _retrieve(self, lower_bound, parent_idx=0):
"""
Tree structure and array storage:
Tree index:
0 -> storing priority sum
/ \
1 2
/ \ / \
3 4 5 6 -> storing priority for transitions
Array type for storing:
[0,1,2,3,4,5,6]
"""
left_child_idx = 2 * parent_idx + 1
right_child_idx = left_child_idx + 1
if left_child_idx >= len(self.tree): # end search when no more child
return parent_idx
if self.tree[left_child_idx] == self.tree[right_child_idx]:
return self._retrieve(lower_bound, np.random.choice([left_child_idx, right_child_idx]))
if lower_bound <= self.tree[left_child_idx]: # downward search, always search for a higher priority node
return self._retrieve(lower_bound, left_child_idx)
else:
return self._retrieve(lower_bound - self.tree[left_child_idx], right_child_idx)
@property
def root_priority(self):
return self.tree[0] # the root
class Memory(object): # stored as ( s, a, r, s_ ) in SumTree
"""
This SumTree code is modified version and the original code is from:
https://github.com/jaara/AI-blog/blob/master/Seaquest-DDQN-PER.py
"""
epsilon = 0.001 # small amount to avoid zero priority
alpha = 0.6 # [0~1] convert the importance of TD error to priority
beta = 0.4 # importance-sampling, from initial value increasing to 1
beta_increment_per_sampling = 1e-5 # annealing the bias
abs_err_upper = 1 # for stability refer to paper
def __init__(self, capacity):
self.tree = SumTree(capacity)
def store(self, error, transition):
p = self._get_priority(error)
self.tree.add_new_priority(p, transition)
def prio_sample(self, n):
batch_idx, batch_memory, ISWeights = [], [], []
segment = self.tree.root_priority / n
self.beta = np.min([1, self.beta + self.beta_increment_per_sampling]) # max = 1
min_prob = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.root_priority
maxiwi = np.power(self.tree.capacity * min_prob, -self.beta) # for later normalizing ISWeights
for i in range(n):
a = segment * i
b = segment * (i + 1)
lower_bound = np.random.uniform(a, b)
while True:
idx, p, data = self.tree.get_leaf(lower_bound)
if type(data) is int:
i -= 1
lower_bound = np.random.uniform(segment * i, segment * (i+1))
else:
break
prob = p / self.tree.root_priority
ISWeights.append(self.tree.capacity * prob)
batch_idx.append(idx)
batch_memory.append(data)
ISWeights = np.vstack(ISWeights)
ISWeights = np.power(ISWeights, -self.beta) / maxiwi # normalize
return batch_idx, np.vstack(batch_memory), ISWeights
def random_sample(self, n):
idx = np.random.randint(0, self.tree.capacity, size=n, dtype=np.int)
return np.vstack(self.tree.data[idx])
def update(self, idx, error):
p = self._get_priority(error)
self.tree.update(idx, p)
def _get_priority(self, error):
error += self.epsilon # avoid 0
clipped_error = np.clip(error, 0, self.abs_err_upper)
return np.power(clipped_error, self.alpha)
sess = tf.Session()
# Create actor and critic.
actor = Actor(sess, ACTION_DIM, ACTION_BOUND, LR_A, REPLACE_ITER_A)
critic = Critic(sess, STATE_DIM, ACTION_DIM, LR_C, GAMMA, REPLACE_ITER_C, actor.a, actor.a_)
actor.add_grad_to_graph(critic.a_grads)
M = Memory(MEMORY_CAPACITY)
saver = tf.train.Saver(max_to_keep=100)
if LOAD_MODEL:
all_ckpt = tf.train.get_checkpoint_state('./data', 'checkpoint').all_model_checkpoint_paths
saver.restore(sess, all_ckpt[-1])
else:
if os.path.isdir(DATA_PATH): shutil.rmtree(DATA_PATH)
os.mkdir(DATA_PATH)
sess.run(tf.global_variables_initializer())
if OUTPUT_GRAPH:
tf.summary.FileWriter('logs', graph=sess.graph)
var = 3 # control exploration
var_min = 0.01
for i_episode in range(MAX_EPISODES):
# s = (hull angle speed, angular velocity, horizontal speed, vertical speed, position of joints and joints angular speed, legs contact with ground, and 10 lidar rangefinder measurements.)
s = env.reset()
ep_r = 0
while True:
if RENDER:
env.render()
a = actor.choose_action(s)
a = np.clip(np.random.normal(a, var), -1, 1) # add randomness to action selection for exploration
s_, r, done, _ = env.step(a) # r = total 300+ points up to the far end. If the robot falls, it gets -100.
if r == -100: r = -2
ep_r += r
transition = np.hstack((s, a, [r], s_))
max_p = np.max(M.tree.tree[-M.tree.capacity:])
M.store(max_p, transition)
if GLOBAL_STEP.eval(sess) > MEMORY_CAPACITY/20:
var = max([var*0.9999, var_min]) # decay the action randomness
tree_idx, b_M, ISWeights = M.prio_sample(BATCH_SIZE) # for critic update
b_s = b_M[:, :STATE_DIM]
b_a = b_M[:, STATE_DIM: STATE_DIM + ACTION_DIM]
b_r = b_M[:, -STATE_DIM - 1: -STATE_DIM]
b_s_ = b_M[:, -STATE_DIM:]
abs_td = critic.learn(b_s, b_a, b_r, b_s_, ISWeights)
actor.learn(b_s)
for i in range(len(tree_idx)): # update priority
idx = tree_idx[i]
M.update(idx, abs_td[i])
if GLOBAL_STEP.eval(sess) % SAVE_MODEL_ITER == 0:
ckpt_path = os.path.join(DATA_PATH, 'DDPG.ckpt')
save_path = saver.save(sess, ckpt_path, global_step=GLOBAL_STEP, write_meta_graph=False)
print("\nSave Model %s\n" % save_path)
if done:
if "running_r" not in globals():
running_r = ep_r
else:
running_r = 0.95*running_r + 0.05*ep_r
if running_r > DISPLAY_THRESHOLD: RENDER = True
else: RENDER = False
done = '| Achieve ' if env.unwrapped.hull.position[0] >= END_POINT else '| -----'
print('Episode:', i_episode,
done,
'| Running_r: %i' % int(running_r),
'| Epi_r: %.2f' % ep_r,
'| Exploration: %.3f' % var,
'| Pos: %.i' % int(env.unwrapped.hull.position[0]),
'| LR_A: %.6f' % sess.run(LR_A),
'| LR_C: %.6f' % sess.run(LR_C),
)
break
s = s_
sess.run(INCREASE_GS)