-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathtest_data_structures.cpp
1140 lines (850 loc) · 36.9 KB
/
test_data_structures.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "catch.hpp"
#include "QuEST.h"
#include "utilities.hpp"
/* allows concise use of Contains in catch's REQUIRE_THROWS_WITH */
using Catch::Matchers::Contains;
/** @sa fromComplex
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "fromComplex", "[data_structures]" ) {
Complex a;
a.real= .5;
a.imag= -.2;
qcomp b = fromComplex(a);
REQUIRE( a.real == real(b) );
REQUIRE( a.imag == imag(b) );
}
/** @sa getStaticComplexMatrixN
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "getStaticComplexMatrixN", "[data_structures]" ) {
/* use of this function is illegal in C++ */
SUCCEED( );
}
/** @sa toComplex
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "toComplex", "[data_structures]" ) {
qcomp a = qcomp(.5,-.2);
#if (!defined(_WIN32)) && (!defined(_WIN64))
Complex b = toComplex(a);
#else
// MSVC profanely forbids in-line struct initialisation
Complex b; b.real = real(a); b.imag = imag(a);
#endif
REQUIRE( real(a) == b.real );
REQUIRE( imag(a) == b.imag );
}
/** @sa createCloneQureg
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createCloneQureg", "[data_structures]" ) {
SECTION( "state-vector" ) {
Qureg a = createQureg(NUM_QUBITS, QUEST_ENV);
Qureg b = createCloneQureg(a, QUEST_ENV);
// check properties are the same
REQUIRE( b.isDensityMatrix == a.isDensityMatrix );
REQUIRE( b.numQubitsRepresented == a.numQubitsRepresented );
REQUIRE( b.numQubitsInStateVec == a.numQubitsInStateVec );
REQUIRE( b.numAmpsPerChunk == a.numAmpsPerChunk );
REQUIRE( b.numAmpsTotal == a.numAmpsTotal );
// check state-vector is the same (works for GPU and distributed)
REQUIRE( areEqual(a, b) );
destroyQureg(a, QUEST_ENV);
destroyQureg(b, QUEST_ENV);
}
SECTION( "density-matrix" ) {
Qureg a = createDensityQureg(NUM_QUBITS, QUEST_ENV);
Qureg b = createCloneQureg(a, QUEST_ENV);
// check properties are the same
REQUIRE( b.isDensityMatrix == a.isDensityMatrix );
REQUIRE( b.numQubitsRepresented == a.numQubitsRepresented );
REQUIRE( b.numQubitsInStateVec == a.numQubitsInStateVec );
REQUIRE( b.numAmpsPerChunk == a.numAmpsPerChunk );
REQUIRE( b.numAmpsTotal == a.numAmpsTotal );
// check state-vector is the same (works for GPU and distributed)
REQUIRE( areEqual(a, b) );
destroyQureg(a, QUEST_ENV);
destroyQureg(b, QUEST_ENV);
}
}
/** @sa createComplexMatrixN
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createComplexMatrixN", "[data_structures]" ) {
SECTION( "correctness" ) {
int numQb = GENERATE( range(1,10+1) );
ComplexMatrixN m = createComplexMatrixN(numQb);
// ensure elems are created and initialised to 0
REQUIRE( areEqual(toQMatrix(m), getZeroMatrix(1<<numQb)) );
destroyComplexMatrixN(m);
}
SECTION( "input validation" ) {
SECTION( "number of qubits" ) {
int numQb = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( createComplexMatrixN(numQb), Contains("Invalid number of qubits") );
}
}
}
/** @sa createDensityQureg
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createDensityQureg", "[data_structures]" ) {
// must be at least one amplitude per node
int minNumQb = calcLog2(QUEST_ENV.numRanks) - 1; // density matrix has 2*numQb in state-vec
if (minNumQb <= 0)
minNumQb = 1;
SECTION( "correctness" ) {
// try 10 valid number of qubits
int numQb = GENERATE_COPY( range(minNumQb, minNumQb+10) );
Qureg reg = createDensityQureg(numQb, QUEST_ENV);
// ensure elems (CPU and/or GPU) are created, and reg begins in |0><0|
QMatrix ref = getZeroMatrix(1<<numQb);
ref[0][0] = 1; // |0><0|
REQUIRE( areEqual(reg, ref) );
destroyQureg(reg, QUEST_ENV);
}
SECTION( "input validation") {
SECTION( "number of qubits" ) {
int numQb = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( createDensityQureg(numQb, QUEST_ENV), Contains("Invalid number of qubits") );
}
SECTION( "number of amplitudes" ) {
// use local QuESTEnv to safely modify
QuESTEnv env = QUEST_ENV;
// too many amplitudes to store in type
int maxQb = (int) calcLog2(SIZE_MAX) / 2;
REQUIRE_THROWS_WITH( createDensityQureg(maxQb+1, env), Contains("Too many qubits") && Contains("size_t type") );
/* n-qubit density matrix contains 2^(2n) amplitudes
* so can be spread between at most 2^(2n) ranks
*/
/* env.numRanks is an int, so maxQb must be capped at 16 for this
* test to avoid an integer overflow when storing 2**(2*minQb) in it
*/
maxQb = maxQb > 16 ? 16 : maxQb;
int minQb = GENERATE_COPY( range(3,maxQb) );
env.numRanks = (int) pow(2, 2*minQb);
int numQb = GENERATE_COPY( range(1,minQb) );
REQUIRE_THROWS_WITH( createDensityQureg(numQb, env), Contains("Too few qubits") );
}
SECTION( "available memory" ) {
/* there is no reliable way to force the malloc statements to
* fail, and hence trigger the matrixInit validation */
SUCCEED( );
}
}
}
/** @sa createDiagonalOp
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createDiagonalOp", "[data_structures]" ) {
// must be at least one amplitude per node
int minNumQb = calcLog2(QUEST_ENV.numRanks);
if (minNumQb == 0)
minNumQb = 1;
SECTION( "correctness" ) {
// try 10 valid number of qubits
int numQb = GENERATE_COPY( range(minNumQb, minNumQb+10) );
DiagonalOp op = createDiagonalOp(numQb, QUEST_ENV);
// check properties are correct
REQUIRE( op.numQubits == numQb );
REQUIRE( op.chunkId == QUEST_ENV.rank );
REQUIRE( op.numChunks == QUEST_ENV.numRanks );
REQUIRE( op.numElemsPerChunk == (1LL << numQb) / QUEST_ENV.numRanks );
REQUIRE( op.real != NULL );
REQUIRE( op.imag != NULL );
// check all elements in CPU are zero
REQUIRE( areEqual(toQVector(op), QVector(1LL << numQb)) );
// (no concise way to check this for GPU)
destroyDiagonalOp(op, QUEST_ENV);
}
SECTION( "input validation" ) {
SECTION( "number of qubits" ) {
int numQb = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( createDiagonalOp(numQb, QUEST_ENV), Contains("Invalid number of qubits") );
}
SECTION( "number of elements" ) {
// use local QuESTEnv to safely modify
QuESTEnv env = QUEST_ENV;
// too many amplitudes to store in type
int maxQb = (int) calcLog2(SIZE_MAX);
REQUIRE_THROWS_WITH( createDiagonalOp(maxQb+1, env), Contains("Too many qubits") && Contains("size_t type") );
/* env.numRanks is an int, so maxQb must be capped at 32 for this
* test to avoid an integer overflow when storing 2**minQb in it
*/
maxQb = maxQb > 32 ? 32 : maxQb;
// too few amplitudes to distribute
int minQb = GENERATE_COPY( range(2,maxQb) );
env.numRanks = (int) pow(2, minQb);
int numQb = GENERATE_COPY( range(1,minQb) );
REQUIRE_THROWS_WITH( createDiagonalOp(numQb, env), Contains("Too few qubits") && Contains("distributed"));
}
SECTION( "available memory" ) {
/* there is no reliable way to force the malloc statements to
* fail, and hence trigger the diagonalOpInit validation */
SUCCEED( );
}
}
}
/** @sa createDiagonalOpFromPauliHamilFile
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createDiagonalOpFromPauliHamilFile", "[data_structures]" ) {
// files created & populated during the test, and deleted afterward
char fnPrefix[] = "temp_createDiagonalOpFromPauliHamilFile";
char fn[100];
// each test uses a unique filename (managed by master node), to avoid file IO locks
// (it's safe for sub-test to overwrite this, since after each test, all files
// with prefix fnPrefix are deleted)
setUniqueFilename(fn, fnPrefix);
// diagonal op must have at least one amplitude per node
int minNumQb = calcLog2(QUEST_ENV.numRanks);
if (minNumQb == 0)
minNumQb = 1;
SECTION( "correctness" ) {
SECTION( "general" ) {
// try several Pauli Hamiltonian sizes
int numQb = GENERATE_COPY( range(minNumQb, 6+minNumQb) );
int numTerms = GENERATE_COPY( 1, minNumQb, 10*minNumQb );
// create a PauliHamil with random elements
PauliHamil hamil = createPauliHamil(numQb, numTerms);
setRandomDiagPauliHamil(hamil);
// write the Hamiltonian to file (with trailing whitespace, and trailing newline)
if (QUEST_ENV.rank == 0) {
FILE* file = fopen(fn, "w");
int i=0;
for (int n=0; n<numTerms; n++) {
fprintf(file, REAL_STRING_FORMAT, hamil.termCoeffs[n]);
fprintf(file, " ");
for (int q=0; q<numQb; q++)
fprintf(file, "%d ", (int) hamil.pauliCodes[i++]);
fprintf(file, "\n");
}
fprintf(file, "\n");
fclose(file);
}
syncQuESTEnv(QUEST_ENV);
// load the file as a diagonal operator, and compare
DiagonalOp op = createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV);
REQUIRE( areEqual(toQMatrix(op), toQMatrix(hamil)) );
destroyPauliHamil(hamil);
destroyDiagonalOp(op, QUEST_ENV);
}
SECTION( "edge cases" ) {
// prepare a valid single-term diagonal Pauli Hamiltonian
qreal coeffs[] = {.1};
VLA(pauliOpType, codes, minNumQb);
for (int q=0; q<minNumQb; q++)
codes[q] = (q%2)? PAULI_I : PAULI_Z;
QMatrix ref = toQMatrix(coeffs, codes, minNumQb, 1);
// prepare basic encoding string
string line = to_string(coeffs[0]) + " ";
for (int q=0; q<minNumQb; q++)
line += to_string(codes[q]) + ((q<minNumQb-1)? " ":"");
SECTION( "no trailing newline or space" ) {
writeToFileSynch(fn, line);
DiagonalOp op = createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV);
REQUIRE( areEqual(ref, toQMatrix(op)) );
destroyDiagonalOp(op, QUEST_ENV);
}
SECTION( "trailing newlines" ) {
writeToFileSynch(fn, line + "\n\n\n");
DiagonalOp op = createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV);
REQUIRE( areEqual(ref, toQMatrix(op)) );
destroyDiagonalOp(op, QUEST_ENV);
}
SECTION( "trailing spaces" ) {
writeToFileSynch(fn, line + " ");
DiagonalOp op = createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV);
REQUIRE( areEqual(ref, toQMatrix(op)) );
destroyDiagonalOp(op, QUEST_ENV);
}
}
}
SECTION( "input validation") {
SECTION( "number of qubits" ) {
writeToFileSynch(fn, ".1 "); // 0 qubits
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV), Contains("The number of qubits") && Contains("strictly positive"));
}
SECTION( "number of elements" ) {
// too many amplitudes to store in type
int maxQb = (int) calcLog2(SIZE_MAX);
// encode one more qubit than legal to file
string line = ".1 ";
for (int q=0; q<(maxQb+1); q++)
line += "3 "; // trailing space ok
writeToFileSynch(fn, line);
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV), Contains("Too many qubits") && Contains("size_t type") );
// use local QuESTEnv to safely modify
QuESTEnv env = QUEST_ENV;
// too few elements to distribute
/* env.numRanks is an int, so maxQb must be capped at 32 for this
* test to avoid an integer overflow when storing 2**minQb in it
*/
maxQb = maxQb > 32 ? 32 : maxQb;
int minQb = GENERATE_COPY( range(2,maxQb) );
env.numRanks = (int) pow(2, minQb);
int numQb = GENERATE_COPY( range(1,minQb) );
line = ".1 ";
for (int q=0; q<numQb; q++)
line += "3 "; // trailing space ok
setUniqueFilename(fn, fnPrefix);
writeToFileSynch(fn, line);
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, env), Contains("Too few qubits") && Contains("distributed") );
}
SECTION( "coefficient type" ) {
writeToFileSynch(fn, "notanumber 1 2 3");
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV), Contains("Failed to parse") && Contains("coefficient"));
}
SECTION( "pauli code" ) {
writeToFileSynch(fn, ".1 0 3 2"); // final is invalid Y
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV), Contains("contained operators other than PAULI_Z and PAULI_I"));
setUniqueFilename(fn, fnPrefix);
writeToFileSynch(fn, ".1 0 1 3"); // second is invalid X
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV), Contains("contained operators other than PAULI_Z and PAULI_I"));
setUniqueFilename(fn, fnPrefix);
writeToFileSynch(fn, ".1 0 1 4"); // final is invalid Pauli code
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV), Contains("invalid pauli code"));
setUniqueFilename(fn, fnPrefix);
writeToFileSynch(fn, ".1 3 0 notanumber"); // final is invalid type
REQUIRE_THROWS_WITH( createDiagonalOpFromPauliHamilFile(fn, QUEST_ENV), Contains("Failed to parse the next expected Pauli code"));
}
}
// delete all files created above
deleteFilesWithPrefixSynch(fnPrefix);
}
/** @sa createPauliHamil
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createPauliHamil", "[data_structures]" ) {
SECTION( "correctness" ) {
int numQb = GENERATE( range(1,5) );
int numTerms = GENERATE( range(1,5) );
PauliHamil hamil = createPauliHamil(numQb, numTerms);
// check fields are correct
REQUIRE( hamil.numQubits == numQb );
REQUIRE( hamil.numSumTerms == numTerms );
// check all Pauli codes are identity
int numPaulis = numQb * numTerms;
for (int i=0; i<numPaulis; i++) {
REQUIRE( hamil.pauliCodes[i] == PAULI_I );
}
// check all term coefficients can be written to (no seg fault)
for (int j=0; j<numTerms; j++) {
hamil.termCoeffs[j] = 1;
REQUIRE( hamil.termCoeffs[j] == 1 );
}
destroyPauliHamil(hamil);
}
SECTION( "input validation") {
SECTION( "number of qubits" ) {
int numQb = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( createPauliHamil(numQb, 1), Contains("The number of qubits and terms in the PauliHamil must be strictly positive.") );
}
SECTION( "number of terms" ) {
int numTerms = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( createPauliHamil(1, numTerms), Contains("The number of qubits and terms in the PauliHamil must be strictly positive.") );
}
}
}
/** @sa createPauliHamilFromFile
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createPauliHamilFromFile", "[data_structures]" ) {
// files created & populated during the test, and deleted afterward
char fnPrefix[] = "temp_createPauliHamilFromFile";
char fn[100];
// each test uses a unique filename (managed by master node), to avoid file IO locks
// (it's safe for sub-test to overwrite this, since after each test, all files
// with prefix fnPrefix are deleted)
setUniqueFilename(fn, fnPrefix);
SECTION( "correctness" ) {
SECTION( "general" ) {
// for several sizes...
int numQb = GENERATE( 1, 5, 10, 15 );
int numTerms = GENERATE( 1, 10, 30 );
int numPaulis = numQb*numTerms;
// create a PauliHamil with random elements
VLA(qreal, coeffs, numTerms);
VLA(pauliOpType, paulis, numPaulis);
setRandomPauliSum(coeffs, paulis, numQb, numTerms);
// write the Hamiltonian to file (with trailing whitespace, and trailing newline)
if (QUEST_ENV.rank == 0) {
FILE* file = fopen(fn, "w");
int i=0;
for (int n=0; n<numTerms; n++) {
fprintf(file, REAL_STRING_FORMAT, coeffs[n]);
fprintf(file, " ");
for (int q=0; q<numQb; q++)
fprintf(file, "%d ", (int) paulis[i++]);
fprintf(file, "\n");
}
fprintf(file, "\n");
fclose(file);
}
syncQuESTEnv(QUEST_ENV);
// load the file as a PauliHamil
PauliHamil hamil = createPauliHamilFromFile(fn);
// check fields agree
REQUIRE( hamil.numQubits == numQb );
REQUIRE( hamil.numSumTerms == numTerms );
// check elements agree
int j=0;
for (int n=0; n<numTerms; n++) {
REQUIRE( absReal(hamil.termCoeffs[n] - coeffs[n]) <= REAL_EPS );
for (int q=0; q<numQb; q++) {
REQUIRE( hamil.pauliCodes[j] == paulis[j] );
j++;
}
}
destroyPauliHamil(hamil);
}
SECTION( "edge cases" ) {
SECTION( "no trailing newline or space" ) {
writeToFileSynch(fn, ".1 1 0 1");
PauliHamil hamil = createPauliHamilFromFile(fn);
REQUIRE( hamil.numSumTerms == 1 );
REQUIRE( hamil.numQubits == 3 );
destroyPauliHamil(hamil);
}
SECTION( "trailing newlines" ) {
writeToFileSynch(fn, ".1 1 0 1\n\n\n");
PauliHamil hamil = createPauliHamilFromFile(fn);
REQUIRE( hamil.numSumTerms == 1 );
REQUIRE( hamil.numQubits == 3 );
destroyPauliHamil(hamil);
}
SECTION( "trailing spaces" ) {
writeToFileSynch(fn, ".1 1 0 1 ");
PauliHamil hamil = createPauliHamilFromFile(fn);
REQUIRE( hamil.numSumTerms == 1 );
REQUIRE( hamil.numQubits == 3 );
destroyPauliHamil(hamil);
}
}
}
SECTION( "input validation") {
SECTION( "number of qubits" ) {
writeToFileSynch(fn, ".1 ");
REQUIRE_THROWS_WITH( createPauliHamilFromFile(fn), Contains("The number of qubits") && Contains("strictly positive"));
}
SECTION( "coefficient type" ) {
writeToFileSynch(fn, "notanumber 1 2 3");
REQUIRE_THROWS_WITH( createPauliHamilFromFile(fn), Contains("Failed to parse") && Contains("coefficient"));
}
SECTION( "pauli code" ) {
writeToFileSynch(fn, ".1 1 2 4"); // invalid int
REQUIRE_THROWS_WITH( createPauliHamilFromFile(fn), Contains("invalid pauli code"));
setUniqueFilename(fn, fnPrefix);
writeToFileSynch(fn, ".1 1 2 notanumber"); // invalid type
REQUIRE_THROWS_WITH( createPauliHamilFromFile(fn), Contains("Failed to parse the next expected Pauli code"));
}
}
// cleanup temp files
deleteFilesWithPrefixSynch(fn);
}
/** @sa createQuESTEnv
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createQuESTEnv", "[data_structures]" ) {
/* there is no meaningful way to test this */
SUCCEED( );
}
/** @sa createQureg
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createQureg", "[data_structures]" ) {
// must be at least one amplitude per node
int minNumQb = calcLog2(QUEST_ENV.numRanks);
if (minNumQb == 0)
minNumQb = 1;
SECTION( "correctness" ) {
// try 10 valid number of qubits
int numQb = GENERATE_COPY( range(minNumQb, minNumQb+10) );
Qureg reg = createQureg(numQb, QUEST_ENV);
// ensure elems (CPU and/or GPU) are created, and reg begins in |0>
QVector ref = QVector(1<<numQb);
ref[0] = 1; // |0>
REQUIRE( areEqual(reg, ref) );
destroyQureg(reg, QUEST_ENV);
}
SECTION( "input validation") {
SECTION( "number of qubits" ) {
int numQb = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( createQureg(numQb, QUEST_ENV), Contains("Invalid number of qubits") );
}
SECTION( "number of amplitudes" ) {
// use local QuESTEnv to safely modify
QuESTEnv env = QUEST_ENV;
// too many amplitudes to store in type
int maxQb = (int) calcLog2(SIZE_MAX);
REQUIRE_THROWS_WITH( createQureg(maxQb+1, env), Contains("Too many qubits") && Contains("size_t type") );
// too few amplitudes to distribute
/* env.numRanks is an int, so maxQb must be capped at 32 for this
* test to avoid an integer overflow when storing 2**minQb in it
*/
maxQb = maxQb > 32 ? 32 : maxQb;
int minQb = GENERATE_COPY( range(2,maxQb) );
env.numRanks = (int) pow(2, minQb);
int numQb = GENERATE_COPY( range(1,minQb) );
REQUIRE_THROWS_WITH( createQureg(numQb, env), Contains("Too few qubits") );
}
SECTION( "available memory" ) {
/* there is no reliable way to force the malloc statements to
* fail, and hence trigger the matrixInit validation */
SUCCEED( );
}
}
}
/** @sa createSubDiagonalOp
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "createSubDiagonalOp", "[data_structures]" ) {
SECTION( "correctness" ) {
int numQb = GENERATE( range(1,10+1) );
SubDiagonalOp op = createSubDiagonalOp(numQb);
// ensure elems are created and initialised to 0
REQUIRE( areEqual(toQMatrix(op), getZeroMatrix(1<<numQb)) );
destroySubDiagonalOp(op);
}
SECTION( "input validation" ) {
SECTION( "number of qubits" ) {
int numQb = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( createSubDiagonalOp(numQb), Contains("Invalid number of qubits") );
numQb = 100;
REQUIRE_THROWS_WITH( createSubDiagonalOp(numQb), Contains("Too many qubits") );
}
}
}
/** @sa destroyComplexMatrixN
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "destroyComplexMatrixN", "[data_structures]" ) {
SECTION( "correctness" ) {
/* there is no meaningful way to test this */
SUCCEED( );
}
SECTION( "input validation" ) {
SECTION( "matrix not created" ) {
/* this is an artificial test case since nothing in the QuEST API
* automatically sets un-initialised ComplexMatrixN fields to
* the NULL pointer.
*/
ComplexMatrixN m;
m.real = NULL;
/* the error message is also somewhat unrelated, but oh well
*/
REQUIRE_THROWS_WITH( destroyComplexMatrixN(m), Contains("The ComplexMatrixN was not successfully created") );
}
}
}
/** @sa destroyDiagonalOp
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "destroyDiagonalOp", "[data_structures]" ) {
/* there is no meaningful way to test this */
SUCCEED( );
}
/** @sa destroyPauliHamil
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "destroyPauliHamil", "[data_structures]" ) {
/* there is no meaningful way to test this.
* We e.g. cannot check that the pointers are NULL because
* they are not updated; this function passes the struct by value,
* not by reference. We also cannot reliably monitor the
* memory used in the heap at runtime.
*/
SUCCEED( );
}
/** @sa destroyQuESTEnv
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "destroyQuESTEnv", "[data_structures]" ) {
/* there is no meaningful way to test this */
SUCCEED( );
}
/** @sa destroyQureg
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "destroyQureg", "[data_structures]" ) {
/* there is no meaningful way to test this.
* We e.g. cannot check that the pointers are NULL because
* they are not updated; this function passes the struct by value,
* not by reference. We also cannot reliably monitor the
* memory used in the heap at runtime.
*/
SUCCEED( );
}
/** @sa destroySubDiagonalOp
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "destroySubDiagonalOp", "[data_structures]" ) {
/* there is no meaningful way to test this */
SUCCEED( );
}
/** @sa initComplexMatrixN
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "initComplexMatrixN", "[data_structures]" ) {
/* use of this function is illegal in C++ */
SUCCEED( );
}
/** @sa initDiagonalOp
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "initDiagonalOp", "[data_structures]" ) {
// must be at least one amplitude per node
int minNumQb = calcLog2(QUEST_ENV.numRanks);
if (minNumQb == 0)
minNumQb = 1;
SECTION( "correctness" ) {
// try 10 valid number of qubits
int numQb = GENERATE_COPY( range(minNumQb, minNumQb+10) );
DiagonalOp op = createDiagonalOp(numQb, QUEST_ENV);
long long int len = (1LL << numQb);
VLA(qreal, reals, len);
VLA(qreal, imags, len);
long long int n;
for (n=0; n<len; n++) {
reals[n] = (qreal) n;
imags[n] = (qreal) -2*n; // (n - 2n i)
}
initDiagonalOp(op, reals, imags);
// check that op.real and op.imag were modified...
REQUIRE( areEqual(toQVector(op), reals, imags) );
// and also that GPU real and imag were modified
// via if it modifies an all-unity state-vec correctly
Qureg qureg = createQureg(numQb, QUEST_ENV);
for (long long int i=0; i<qureg.numAmpsPerChunk; i++) {
qureg.stateVec.real[i] = 1;
qureg.stateVec.imag[i] = 1;
}
copyStateToGPU(qureg);
QVector prodRef = toQMatrix(op) * toQVector(qureg);
// (n - 2n i) * (1 + 1i) = 3n - n*i
applyDiagonalOp(qureg, op);
copyStateFromGPU(qureg);
QVector result = toQVector(qureg);
REQUIRE( areEqual(prodRef, result) );
destroyQureg(qureg, QUEST_ENV);
destroyDiagonalOp(op, QUEST_ENV);
}
}
/** @sa initDiagonalOpFromPauliHamil
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "initDiagonalOpFromPauliHamil", "[data_structures]" ) {
// distributed diagonal op must contain at least one amplitude per node
int minNumQb = calcLog2(QUEST_ENV.numRanks);
if (minNumQb == 0)
minNumQb = 1;
SECTION( "correctness" ) {
// try (at most) 10 valid number of qubits (even for validation)
int numQb = GENERATE_COPY( range(minNumQb, min(10,minNumQb+10)) );
DiagonalOp op = createDiagonalOp(numQb, QUEST_ENV);
// try several sized random all-Z Hamiltonians
int numTerms = GENERATE_COPY( 1, numQb, 5*numQb );
PauliHamil hamil = createPauliHamil(numQb, numTerms);
setRandomDiagPauliHamil(hamil);
initDiagonalOpFromPauliHamil(op, hamil);
REQUIRE( areEqual(toQMatrix(op), toQMatrix(hamil)) );
destroyPauliHamil(hamil);
destroyDiagonalOp(op, QUEST_ENV);
}
SECTION( "input validation" ) {
SECTION( "hamiltonian parameters" ) {
DiagonalOp op = createDiagonalOp(minNumQb, QUEST_ENV);
PauliHamil hamil;
hamil.numQubits = GENERATE( -1, 0 );
hamil.numSumTerms = 1;
REQUIRE_THROWS_WITH( initDiagonalOpFromPauliHamil(op, hamil), Contains("number of qubits") && Contains("strictly positive") );
hamil.numQubits = minNumQb;
hamil.numSumTerms = GENERATE( -1, 0 );
REQUIRE_THROWS_WITH( initDiagonalOpFromPauliHamil(op, hamil), Contains("terms") && Contains("strictly positive") );
destroyDiagonalOp(op, QUEST_ENV);
}
SECTION( "mismatching dimensions" ) {
int numQbA = minNumQb+1;
int numQbB = GENERATE_COPY( numQbA-1, numQbA+1 );
DiagonalOp op = createDiagonalOp(numQbA, QUEST_ENV);
PauliHamil hamil = createPauliHamil(numQbB, 1);
REQUIRE_THROWS_WITH( initDiagonalOpFromPauliHamil(op, hamil), Contains("Pauli Hamiltonian and diagonal operator have different, incompatible dimensions") );
destroyDiagonalOp(op, QUEST_ENV);
destroyPauliHamil(hamil);
}
SECTION( "pauli codes" ) {
DiagonalOp op = createDiagonalOp(minNumQb, QUEST_ENV);
PauliHamil hamil = createPauliHamil(minNumQb, 5); // all I
// make only one code invalid
int numCodes = minNumQb * hamil.numSumTerms;
int ind = GENERATE_COPY( range(0,numCodes) );
hamil.pauliCodes[ind] = GENERATE( PAULI_X, PAULI_Y );
REQUIRE_THROWS_WITH( initDiagonalOpFromPauliHamil(op, hamil), Contains("contained operators other than PAULI_Z and PAULI_I") );
destroyDiagonalOp(op, QUEST_ENV);
destroyPauliHamil(hamil);
}
}
}
/** @sa initPauliHamil
* @ingroup unittest
* @author Tyson Jones
*/
TEST_CASE( "initPauliHamil", "[data_structures]" ) {
SECTION( "correctness" ) {
PauliHamil hamil = createPauliHamil(3, 2);
qreal coeffs[] = {-5, 5};
enum pauliOpType codes[] = {
PAULI_X, PAULI_Y, PAULI_Z,
PAULI_Z, PAULI_Y, PAULI_X};
initPauliHamil(hamil, coeffs, codes);
// check everything written correctly
for (int t=0; t<2; t++) {
REQUIRE( coeffs[t] == hamil.termCoeffs[t] );
for (int q=0; q<3; q++) {
int ind = 3*t+q;
REQUIRE( codes[ind] == hamil.pauliCodes[ind] );
}
}
destroyPauliHamil(hamil);
}
SECTION( "input validation" ) {
SECTION( "parameters" ) {
// parameters checked before codes, so safe to leave un-initialised
qreal coeffs[1];
enum pauliOpType codes[1];
PauliHamil hamil;
hamil.numQubits = GENERATE( -1, 0 );
hamil.numSumTerms = 1;
REQUIRE_THROWS_WITH( initPauliHamil(hamil, coeffs, codes), Contains("number of qubits") && Contains("strictly positive") );