-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathutilities.cpp
1681 lines (1422 loc) · 50 KB
/
utilities.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** @file
* Unoptimised, analytic implementations of matrix operations used by QuEST_unit_tests
*
* @author Tyson Jones
*/
#include "QuEST.h"
#include "utilities.hpp"
#include "catch.hpp"
#include <random>
#include <algorithm>
#include <bitset>
#ifdef DISTRIBUTED_MODE
#include <mpi.h>
#endif
/* (don't generate doxygen doc)
*
* preconditions to the internal unit testing functions are checked using
* DEMAND rather than Catch2's REQUIRE, so that they are not counted in the
* total unit testing statistics (e.g. number of checks passed).
*/
#define DEMAND( cond ) if (!(cond)) FAIL( );
QVector operator + (const QVector& v1, const QVector& v2) {
DEMAND( v1.size() == v2.size() );
QVector out = v1;
for (size_t i=0; i<v2.size(); i++)
out[i] += v2[i];
return out;
}
QVector operator - (const QVector& v1, const QVector& v2) {
DEMAND( v1.size() == v2.size() );
QVector out = v1;
for (size_t i=0; i<v2.size(); i++)
out[i] -= v2[i];
return out;
}
QVector operator * (const qcomp& a, const QVector& v) {
QVector out = v;
for (size_t i=0; i<v.size(); i++)
out[i] *= a;
return out;
}
QVector operator * (const QVector& v, const qcomp& a) {
return a * v;
}
QVector operator / (const QVector& v, const qcomp& a) {
DEMAND( abs(a) != 0 );
QVector out = v;
for (size_t i=0; i<v.size(); i++)
out[i] /= a;
return out;
}
qcomp operator * (const QVector &v1, const QVector& v2) {
// this is sum_i v1_i conj(v2_i)
DEMAND( v1.size() == v2.size() );
qcomp out = 0;
for (size_t i=0; i<v1.size(); i++)
out += v1[i] * conj(v2[i]);
return out;
}
void operator += (QVector& v1, const QVector& v2) { // these violate += returns (fine)
v1 = v1 + v2;
}
void operator -= (QVector& v1, const QVector& v2) {
v1 = v1 - v2;
}
void operator *= (QVector& v1, const qcomp& a) {
v1 = v1 * a;
}
void operator /= (QVector& v1, const qcomp& a) {
v1 = v1 / a;
}
QMatrix operator + (const QMatrix& m1, const QMatrix& m2) {
DEMAND( m1.size() == m2.size() );
QMatrix out = m1;
for (size_t r=0; r<m1.size(); r++)
for (size_t c=0; c<m1.size(); c++)
out[r][c] += m2[r][c];
return out;
}
QMatrix operator - (const QMatrix& m1, const QMatrix& m2) {
DEMAND( m1.size() == m2.size() );
QMatrix out = m1;
for (size_t r=0; r<m1.size(); r++)
for (size_t c=0; c<m1.size(); c++)
out[r][c] -= m2[r][c];
return out;
}
QMatrix operator * (const qcomp& a, const QMatrix& m) {
QMatrix out = m;
for (size_t r=0; r<m.size(); r++)
for (size_t c=0; c<m.size(); c++)
out[r][c] *= a;
return out;
}
QMatrix operator * (const QMatrix& m, const qcomp& a) {
return a * m;
}
QMatrix operator / (const QMatrix& m, const qcomp& a) {
QMatrix out = m;
for (size_t r=0; r<m.size(); r++)
for (size_t c=0; c<m.size(); c++)
out[r][c] /= a;
return out;
}
QMatrix operator * (const QMatrix& m1, const QMatrix& m2) {
QMatrix prod = m1; // will be completely overwritten
for (size_t r=0; r<m1.size(); r++)
for (size_t c=0; c<m1.size(); c++) {
prod[r][c] = 0;
for (size_t k=0; k<m1.size(); k++)
prod[r][c] += m1[r][k] * m2[k][c];
}
return prod;
}
void operator += (QMatrix& m1, const QMatrix& m2) {
m1 = m1 + m2;
}
void operator -= (QMatrix& m1, const QMatrix& m2) {
m1 = m1 - m2;
}
void operator *= (QMatrix& m1, const qreal& a) {
m1 = m1 * a;
}
void operator /= (QMatrix& m1, const qreal& a) {
m1 = m1 / a;
}
void operator *= (QMatrix& m1, const QMatrix& m2) {
m1 = m1 * m2;
}
QVector operator * (const QMatrix& m, const QVector& v) {
DEMAND( m.size() == v.size() );
QVector prod = QVector(v.size());
for (size_t r=0; r<v.size(); r++)
for (size_t c=0; c<v.size(); c++)
prod[r] += m[r][c] * v[c];
return prod;
}
void assertQuregAndRefInDebugState(Qureg qureg, QVector ref) {
DEMAND( qureg.isDensityMatrix == 0 );
DEMAND( qureg.numAmpsTotal == (long long int) ref.size() );
// assert ref is in the debug state (else initDebugState failed)
for (size_t i=0; i<ref.size(); i++) {
qcomp val = qcomp(.2*i, .2*i+.1);
DEMAND( abs(ref[i] - val) < REAL_EPS );
}
// check qureg and ref agree
DEMAND( areEqual(qureg, ref) );
}
void assertQuregAndRefInDebugState(Qureg qureg, QMatrix ref) {
DEMAND( qureg.isDensityMatrix == 1 );
DEMAND( (1LL << qureg.numQubitsRepresented) == (long long int) ref.size() );
// assert ref is in the (column-wise) debug state (else initDebugState failed)
size_t i = 0;
for (size_t c=0; c<ref.size(); c++) {
for (size_t r=0; r<ref.size(); r++) {
qcomp val = qcomp(.2*i, .2*i+.1);
DEMAND( abs(ref[r][c] - val) < REAL_EPS );
i++;
}
}
// check qureg and ref agree
DEMAND( areEqual(qureg, ref) );
}
QVector getKroneckerProduct(QVector b, QVector a) {
QVector prod = QVector(a.size() * b.size());
for (size_t i=0; i<prod.size(); i++)
prod[i] = b[i / a.size()] * a[i % a.size()];
return prod;
}
QMatrix getZeroMatrix(size_t dim) {
DEMAND( dim > 1 );
QMatrix matr = QMatrix(dim);
for (size_t i=0; i<dim; i++)
matr[i].resize(dim);
return matr;
}
QMatrix getIdentityMatrix(size_t dim) {
DEMAND( dim > 1 );
QMatrix matr = getZeroMatrix(dim);
for (size_t i=0; i<dim; i++)
matr[i][i] = 1;
return matr;
}
QMatrix getKetBra(QVector ket, QVector bra) {
DEMAND( ket.size() == bra.size() );
QMatrix mat = getZeroMatrix(ket.size());
for (size_t r=0; r<ket.size(); r++)
for (size_t c=0; c<ket.size(); c++)
mat[r][c] = ket[r] * conj(bra[c]);
return mat;
}
QMatrix getKroneckerProduct(QMatrix a, QMatrix b) {
QMatrix prod = getZeroMatrix(a.size() * b.size());
for (size_t r=0; r<b.size(); r++)
for (size_t c=0; c<b.size(); c++)
for (size_t i=0; i<a.size(); i++)
for (size_t j=0; j<a.size(); j++)
prod[r+b.size()*i][c+b.size()*j] = a[i][j] * b[r][c];
return prod;
}
QMatrix getTranspose(QMatrix a) {
QMatrix b = a;
for (size_t r=0; r<a.size(); r++)
for (size_t c=0; c<a.size(); c++)
b[r][c] = a[c][r];
return b;
}
QMatrix getConjugateTranspose(QMatrix a) {
QMatrix b = a;
for (size_t r=0; r<a.size(); r++)
for (size_t c=0; c<a.size(); c++)
b[r][c] = conj(a[c][r]);
return b;
}
QMatrix getExponentialOfDiagonalMatrix(QMatrix a) {
// ensure diagonal
for (size_t r=0; r<a.size(); r++)
for (size_t c=0; c<a.size(); c++) {
if (r == c)
continue;
DEMAND( real(a[r][c]) == 0. );
DEMAND( imag(a[r][c]) == 0. );
}
// exp(diagonal) = diagonal(exp)
QMatrix diag = a;
for (size_t i=0; i<a.size(); i++)
diag[i][i] = exp(diag[i][i]);
return diag;
}
QMatrix getExponentialOfPauliMatrix(qreal angle, QMatrix a) {
QMatrix iden = getIdentityMatrix(a.size());
QMatrix expo = (cos(angle/2) * iden) + ((qcomp) -1i * sin(angle/2) * a);
return expo;
}
void setSubMatrix(QMatrix &dest, QMatrix sub, size_t r, size_t c) {
DEMAND( sub.size() + r <= dest.size() );
DEMAND( sub.size() + c <= dest.size() );
for (size_t i=0; i<sub.size(); i++)
for (size_t j=0; j<sub.size(); j++)
dest[r+i][c+j] = sub[i][j];
}
QMatrix getSwapMatrix(int qb1, int qb2, int numQb) {
DEMAND( numQb > 1 );
DEMAND( (qb1 >= 0 && qb1 < numQb) );
DEMAND( (qb2 >= 0 && qb2 < numQb) );
if (qb1 > qb2)
std::swap(qb1, qb2);
if (qb1 == qb2)
return getIdentityMatrix(1 << numQb);
QMatrix swap;
if (qb2 == qb1 + 1) {
// qubits are adjacent
swap = QMatrix{{1,0,0,0},{0,0,1,0},{0,1,0,0},{0,0,0,1}};
} else {
// qubits are distant
int block = 1 << (qb2 - qb1);
swap = getZeroMatrix(block*2);
QMatrix iden = getIdentityMatrix(block/2);
// Lemma 3.1 of arxiv.org/pdf/1711.09765.pdf
QMatrix p0{{1,0},{0,0}};
QMatrix l0{{0,1},{0,0}};
QMatrix l1{{0,0},{1,0}};
QMatrix p1{{0,0},{0,1}};
/* notating a^(n+1) = identity(1<<n) (otimes) a, we construct the matrix
* [ p0^(N) l1^N ]
* [ l0^(N) p1^N ]
* where N = qb2 - qb1 */
setSubMatrix(swap, getKroneckerProduct(iden, p0), 0, 0);
setSubMatrix(swap, getKroneckerProduct(iden, l0), block, 0);
setSubMatrix(swap, getKroneckerProduct(iden, l1), 0, block);
setSubMatrix(swap, getKroneckerProduct(iden, p1), block, block);
}
// pad swap with outer identities
if (qb1 > 0)
swap = getKroneckerProduct(swap, getIdentityMatrix(1<<qb1));
if (qb2 < numQb-1)
swap = getKroneckerProduct(getIdentityMatrix(1<<(numQb-qb2-1)), swap);
return swap;
}
/* (don't generate doxygen doc)
*
* iterates list1 (of length len1) and replaces element oldEl with newEl, which is
* gauranteed to be present at most once (between list1 AND list2), though may
* not be present at all. If oldEl isn't present in list1, does the same for list2.
* list1 is skipped if == NULL. This is used by getFullOperatorMatrix() to ensure
* that, when qubits are swapped, their appearences in the remaining qubit lists
* are updated.
*/
void updateIndices(int oldEl, int newEl, int* list1, int len1, int* list2, int len2) {
if (list1 != NULL) {
for (int i=0; i<len1; i++) {
if (list1[i] == oldEl) {
list1[i] = newEl;
return;
}
}
}
for (int i=0; i<len2; i++) {
if (list2[i] == oldEl) {
list2[i] = newEl;
return;
}
}
}
QMatrix getFullOperatorMatrix(
int* ctrls, int numCtrls, int *targs, int numTargs, QMatrix op, int numQubits
) {
DEMAND( numCtrls >= 0 );
DEMAND( numTargs >= 0 );
DEMAND( numQubits >= (numCtrls+numTargs) );
DEMAND( op.size() == (1u << numTargs) );
// copy {ctrls} and {targs}to restore at end
std::vector<int> ctrlsCopy(ctrls, ctrls+numCtrls);
std::vector<int> targsCopy(targs, targs+numTargs);
// full-state matrix of qubit swaps
QMatrix swaps = getIdentityMatrix(1 << numQubits);
QMatrix unswaps = getIdentityMatrix(1 << numQubits);
QMatrix matr;
// swap targs to {0, ..., numTargs-1}
for (int i=0; i<numTargs; i++) {
if (i != targs[i]) {
matr = getSwapMatrix(i, targs[i], numQubits);
swaps = matr * swaps;
unswaps = unswaps * matr;
// even if this is the last targ, ctrls might still need updating
updateIndices(
i, targs[i], (i < numTargs-1)? &targs[i+1] : NULL,
numTargs-i-1, ctrls, numCtrls);
}
}
// swap ctrls to {numTargs, ..., numTargs+numCtrls-1}
for (int i=0; i<numCtrls; i++) {
int newInd = numTargs+i;
if (newInd != ctrls[i]) {
matr = getSwapMatrix(newInd, ctrls[i], numQubits);
swaps = matr * swaps;
unswaps = unswaps * matr;
// update remaining ctrls (if any exist)
if (i < numCtrls-1)
updateIndices(newInd, ctrls[i], NULL, 0, &ctrls[i+1], numCtrls-i-1);
}
}
// construct controlled-op matrix for qubits {0, ..., numCtrls+numTargs-1}
size_t dim = 1 << (numCtrls+numTargs);
QMatrix fullOp = getIdentityMatrix(dim);
setSubMatrix(fullOp, op, dim-op.size(), dim-op.size());
// create full-state controlled-op matrix (left-pad identities)
if (numQubits > numCtrls+numTargs) {
size_t pad = 1 << (numQubits - numCtrls - numTargs);
fullOp = getKroneckerProduct(getIdentityMatrix(pad), fullOp);
}
// apply swap to either side (to swap qubits back and forth)
fullOp = unswaps * fullOp * swaps;
// restore {ctrls and targs}
for (int i=0; i<numCtrls; i++)
ctrls[i] = ctrlsCopy[i];
for (int i=0; i<numTargs; i++)
targs[i] = targsCopy[i];
return fullOp;
}
unsigned int calcLog2(long unsigned int res) {
unsigned int n = 0;
while (res >>= 1)
n++;
return n;
}
QMatrix getRandomQMatrix(int dim) {
DEMAND( dim > 1 );
QMatrix matr = getZeroMatrix(dim);
for (int i=0; i<dim; i++) {
for (int j=0; j<dim; j++) {
// generate 2 normally-distributed random numbers via Box-Muller
qreal a = rand()/(qreal) RAND_MAX;
qreal b = rand()/(qreal) RAND_MAX;
if (a == 0) a = REAL_EPS; // prevent rand()=0 creation of NaN
qreal r1 = sqrt(-2 * log(a)) * cos(2 * 3.14159265 * b);
qreal r2 = sqrt(-2 * log(a)) * sin(2 * 3.14159265 * b);
matr[i][j] = r1 + r2 * (qcomp) 1i;
}
}
return matr;
}
bool areEqual(QVector a, QVector b) {
DEMAND( a.size() == b.size() );
for (size_t i=0; i<a.size(); i++)
if (abs(a[i] - b[i]) > REAL_EPS)
return false;
return true;
}
bool areEqual(QMatrix a, QMatrix b) {
DEMAND( a.size() == b.size() );
for (size_t i=0; i<a.size(); i++)
for (size_t j=0; j<b.size(); j++)
if (abs(a[i][j] - b[i][j]) > REAL_EPS)
return false;
return true;
}
qcomp expI(qreal phase) {
return qcomp(cos(phase), sin(phase));
}
qreal getRandomReal(qreal min, qreal max) {
DEMAND( min <= max );
qreal r = min + (max - min) * (rand() / (qreal) RAND_MAX);
// check bounds satisfied
DEMAND( r >= min );
DEMAND( r <= max );
return r;
}
qcomp getRandomComplex() {
return getRandomReal(-1,1) + getRandomReal(-1,1) * (qcomp) 1i;
}
QVector getRandomQVector(int dim) {
QVector vec = QVector(dim);
for (int i=0; i<dim; i++)
vec[i] = getRandomComplex();
// check we didn't get the impossibly-unlikely zero-amplitude outcome
DEMAND( real(vec[0]) != 0 );
return vec;
}
QVector getNormalised(QVector vec) {
// compute the vec norm via Kahan summation to suppress numerical error
qreal norm = 0;
qreal y, t, c;
c = 0;
for (size_t i=0; i<vec.size(); i++) {
y = real(vec[i])*real(vec[i]) - c;
t = norm + y;
c = ( t - norm ) - y;
norm = t;
y = imag(vec[i])*imag(vec[i]) - c;
t = norm + y;
c = ( t - norm ) - y;
norm = t;
}
for (size_t i=0; i<vec.size(); i++)
vec[i] /= sqrt(norm);
return vec;
}
QVector getRandomStateVector(int numQb) {
return getNormalised(getRandomQVector(1<<numQb));
}
std::vector<qreal> getRandomProbabilities(int numProbs) {
// generate random unnormalised scalars
std::vector<qreal> probs;
qreal total = 0;
for (int i=0; i<numProbs; i++) {
qreal prob = getRandomReal(0, 1);
probs.push_back(prob);
total += prob;
}
// normalise
for (int i=0; i<numProbs; i++)
probs[i] /= total;
return probs;
}
QMatrix getRandomDensityMatrix(int numQb) {
DEMAND( numQb > 0 );
// generate random probabilities to weight random pure states
int dim = 1<<numQb;
std::vector<qreal> probs = getRandomProbabilities(dim);
// add random pure states
QMatrix dens = getZeroMatrix(dim);
for (int i=0; i<dim; i++) {
QVector pure = getRandomStateVector(numQb);
dens += probs[i] * getKetBra(pure, pure);
}
return dens;
}
QMatrix getPureDensityMatrix(QVector state) {
return getKetBra(state, state);
}
QMatrix getRandomPureDensityMatrix(int numQb) {
QVector vec = getRandomStateVector(numQb);
QMatrix mat = getPureDensityMatrix(vec);
return mat;
}
QVector getMatrixDiagonal(QMatrix matr) {
QVector vec = QVector(matr.size());
for (size_t i=0; i<vec.size(); i++)
vec[i] = matr[i][i];
return vec;
}
int getRandomInt(int min, int max) {
return (int) round(getRandomReal(min, max-1));
}
QMatrix getOrthonormalisedRows(QMatrix matr) {
// perform the Gram-Schmidt process, processing each row of matr in-turn
for (size_t i=0; i<matr.size(); i++) {
QVector row = matr[i];
// compute new orthogonal row by subtracting proj row onto prevs
for (int k=i-1; k>=0; k--) {
// compute inner_product(row, prev) = row . conj(prev)
qcomp prod = row * matr[k];
// subtract (proj row onto prev) = (prod * prev) from final row
matr[i] -= prod * matr[k];
}
// normalise the row
matr[i] = getNormalised(matr[i]);
}
// return the new orthonormal matrix
return matr;
}
QMatrix getRandomDiagonalUnitary(int numQb) {
DEMAND( numQb >= 1 );
QMatrix matr = getZeroMatrix(1 << numQb);
for (size_t i=0; i<matr.size(); i++)
matr[i][i] = expI(getRandomReal(0,4*M_PI));
return matr;
}
QMatrix getRandomUnitary(int numQb) {
DEMAND( numQb >= 1 );
// create Z ~ random complex matrix (distribution not too important)
size_t dim = 1 << numQb;
QMatrix matrZ = getRandomQMatrix(dim);
QMatrix matrZT = getTranspose(matrZ);
// create Z = Q R (via QR decomposition) ...
QMatrix matrQT = getOrthonormalisedRows(matrZ);
QMatrix matrQ = getTranspose(matrQT);
QMatrix matrR = getZeroMatrix(dim);
// ... where R_rc = (columm c of Z) . (column r of Q) = (row c of ZT) . (row r of QT)
for (size_t r=0; r<dim; r++)
for (size_t c=r; c<dim; c++)
matrR[r][c] = matrZT[c] * matrQT[r];
// create D = normalised diagonal of R
QMatrix matrD = getZeroMatrix(dim);
for (size_t i=0; i<dim; i++)
matrD[i][i] = matrR[i][i] / abs(matrR[i][i]);
// create U = Q D
QMatrix matrU = matrQ * matrD;
// in the rare scenario the result is not sufficiently precisely unitary,
// replace it with a trivially unitary diagonal matrix
QMatrix daggerProd = matrU * getConjugateTranspose(matrU);
QMatrix iden = getIdentityMatrix(dim);
if( ! areEqual(daggerProd, iden) )
matrU = getRandomDiagonalUnitary(numQb);
return matrU;
}
std::vector<QMatrix> getRandomKrausMap(int numQb, int numOps) {
DEMAND( numOps >= 1 );
DEMAND( numOps <= 4*numQb*numQb );
// generate random unitaries
std::vector<QMatrix> ops;
for (int i=0; i<numOps; i++)
ops.push_back(getRandomUnitary(numQb));
// generate random weights
std::vector<qreal> weights(numOps);
for (int i=0; i<numOps; i++)
weights[i] = getRandomReal(0, 1);
// normalise random weights
qreal weightSum = 0;
for (int i=0; i<numOps; i++)
weightSum += weights[i];
for (int i=0; i<numOps; i++)
weights[i] = sqrt((qreal) weights[i]/weightSum);
// normalise ops
for (int i=0; i<numOps; i++)
ops[i] *= weights[i];
// check what we produced was a valid Kraus map
QMatrix iden = getIdentityMatrix(1 << numQb);
QMatrix prodSum = getZeroMatrix(1 << numQb);
for (int i=0; i<numOps; i++)
prodSum += getConjugateTranspose(ops[i]) * ops[i];
// in the rare scenario it is insufficiently numerically precise,
// replace the map with trivially precise diagonals
if( ! areEqual(prodSum, iden) )
for (int i=0; i<numOps; i++)
ops[i] = weights[i] * getRandomDiagonalUnitary(numQb);
return ops;
}
std::vector<QVector> getRandomOrthonormalVectors(int numQb, int numStates) {
DEMAND( numQb >= 1 );
DEMAND( numStates >= 1);
// set of orthonormal vectors
std::vector<QVector> vecs;
for (int n=0; n<numStates; n++) {
QVector vec = getRandomStateVector(numQb);
// orthogonalise by substracting projections of existing vectors
for (int m=0; m<n; m++) {
qcomp prod = vec * vecs[m];
vec -= (prod * vecs[m]);
}
// renormalise
vec = getNormalised(vec);
// add to orthonormal set
vecs.push_back(vec);
}
return vecs;
}
QMatrix getMixedDensityMatrix(std::vector<qreal> probs, std::vector<QVector> states) {
DEMAND( probs.size() == states.size() );
DEMAND( probs.size() >= 1 );
QMatrix matr = getZeroMatrix(states[0].size());
for (size_t i=0; i<probs.size(); i++)
matr += probs[i] * getPureDensityMatrix(states[i]);
return matr;
}
QVector getDFT(QVector in) {
REQUIRE( in.size() > 0 );
size_t dim = in.size();
qreal ampFac = 1 / sqrt( dim );
qreal phaseFac = 2 * M_PI / dim;
QVector dftVec = QVector(dim);
for (size_t x=0; x<dim; x++) {
dftVec[x] = 0;
for (size_t y=0; y<dim; y++)
dftVec[x] += expI(phaseFac * x * y) * in[y];
dftVec[x] *= ampFac;
}
return dftVec;
}
long long int getValueOfTargets(long long int ind, int* targs, int numTargs) {
DEMAND( ind >= 0 );
long long int val = 0;
for (int t=0; t<numTargs; t++)
val += ((ind >> targs[t]) & 1) * (1LL << t);
return val;
}
long long int setBit(long long int num, int bitInd, int bitVal) {
DEMAND( (bitVal == 0 || bitVal == 1) );
DEMAND( num >= 0 );
DEMAND( bitInd >= 0 );
return (num & ~(1UL << bitInd)) | (bitVal << bitInd);
}
long long int getIndexOfTargetValues(long long int ref, int* targs, int numTargs, long long int targVal) {
// ref state is the starting index, where the targets can be in any bit state;
// on the bits of the non-target qubits matter
for (int t=0; t<numTargs; t++) {
int bit = (targVal >> t) & 1;
ref = setBit(ref, targs[t], bit);
}
return ref;
}
QVector getDFT(QVector in, int* targs, int numTargs) {
QVector out = QVector(in.size());
long long int inDim = (long long int) in.size();
long long int targDim = (1LL << numTargs);
for (long long int j=0; j<inDim; j++) {
// |j> = |x> (x) |...>, but mixed (not separated)
long long int x = getValueOfTargets(j, targs, numTargs);
for (long long int y=0; y<targDim; y++) {
// modifies sum_y |y> (x) ...
long long int outInd = getIndexOfTargetValues(j, targs, numTargs, y);
qcomp elem = (in[j] / sqrt(pow(2,numTargs))) * expI(2*M_PI * x * y / pow(2,numTargs));
out[outInd] += elem;
}
}
return out;
}
/* (do not generate doxygen doc)
*
* Overloads for applyReferenceOp, to conveniently specify all families of
* unitary operations on state-vectors.
*/
void applyReferenceOp(
QVector &state, int* ctrls, int numCtrls, int *targs, int numTargs, QMatrix op
) {
int numQubits = calcLog2(state.size());
QMatrix fullOp = getFullOperatorMatrix(ctrls, numCtrls, targs, numTargs, op, numQubits);
state = fullOp * state;
}
void applyReferenceOp(
QVector &state, int* ctrls, int numCtrls, int targ1, int targ2, QMatrix op
) {
int targs[2] = {targ1, targ2};
applyReferenceOp(state, ctrls, numCtrls, targs, 2, op);
}
void applyReferenceOp(
QVector &state, int* ctrls, int numCtrls, int target, QMatrix op
) {
int targs[1] = {target};
applyReferenceOp(state, ctrls, numCtrls, targs, 1, op);
}
void applyReferenceOp(
QVector &state, int *targs, int numTargs, QMatrix op
) {
applyReferenceOp(state, NULL, 0, targs, numTargs, op);
}
void applyReferenceOp(
QVector &state, int ctrl, int targ, QMatrix op
) {
int ctrls[1] = {ctrl};
int targs[1] = {targ};
applyReferenceOp(state, ctrls, 1, targs, 1, op);
}
void applyReferenceOp(
QVector &state, int ctrl, int* targs, int numTargs, QMatrix op
) {
int ctrls[1] = {ctrl};
applyReferenceOp(state, ctrls, 1, targs, numTargs, op);
}
void applyReferenceOp(
QVector &state, int ctrl, int targ1, int targ2, QMatrix op
) {
int ctrls[1] = {ctrl};
int targs[2] = {targ1, targ2};
applyReferenceOp(state, ctrls, 1, targs, 2, op);
}
void applyReferenceOp(
QVector &state, int targ, QMatrix op
) {
int targs[1] = {targ};
applyReferenceOp(state, NULL, 0, targs, 1, op);
}
/* (do not generate doxygen doc)
*
* Overloads for applyReferenceOp, to conveniently specify all families of
* unitary operations on state-vectors.
*/
void applyReferenceOp(
QMatrix &state, int* ctrls, int numCtrls, int *targs, int numTargs, QMatrix op
) {
int numQubits = calcLog2(state.size());
QMatrix leftOp = getFullOperatorMatrix(ctrls, numCtrls, targs, numTargs, op, numQubits);
QMatrix rightOp = getConjugateTranspose(leftOp);
state = leftOp * state * rightOp;
}
void applyReferenceOp(
QMatrix &state, int* ctrls, int numCtrls, int targ1, int targ2, QMatrix op
) {
int targs[2] = {targ1, targ2};
applyReferenceOp(state, ctrls, numCtrls, targs, 2, op);
}
void applyReferenceOp(
QMatrix &state, int* ctrls, int numCtrls, int target, QMatrix op
) {
int targs[1] = {target};
applyReferenceOp(state, ctrls, numCtrls, targs, 1, op);
}
void applyReferenceOp(
QMatrix &state, int *targs, int numTargs, QMatrix op
) {
applyReferenceOp(state, NULL, 0, targs, numTargs, op);
}
void applyReferenceOp(
QMatrix &state, int ctrl, int targ, QMatrix op
) {
int ctrls[1] = {ctrl};
int targs[1] = {targ};
applyReferenceOp(state, ctrls, 1, targs, 1, op);
}
void applyReferenceOp(
QMatrix &state, int ctrl, int* targs, int numTargs, QMatrix op
) {
int ctrls[1] = {ctrl};
applyReferenceOp(state, ctrls, 1, targs, numTargs, op);
}
void applyReferenceOp(
QMatrix &state, int ctrl, int targ1, int targ2, QMatrix op
) {
int ctrls[1] = {ctrl};
int targs[2] = {targ1, targ2};
applyReferenceOp(state, ctrls, 1, targs, 2, op);
}
void applyReferenceOp(
QMatrix &state, int targ, QMatrix op
) {
int targs[1] = {targ};
applyReferenceOp(state, NULL, 0, targs, 1, op);
}
/* (do not generate doxygen doc)
*
* Overloads for applyReferenceMatrix, to simply left-multiply a matrix (possibly
* with additional control qubits) onto a state.
*/
void applyReferenceMatrix(
QVector &state, int* ctrls, int numCtrls, int *targs, int numTargs, QMatrix op
) {
// for state-vectors, the op is always just left-multiplied
applyReferenceOp(state, ctrls, numCtrls, targs, numTargs, op);
}
void applyReferenceMatrix(
QVector &state, int *targs, int numTargs, QMatrix op
) {
// for state-vectors, the op is always just left-multiplied
applyReferenceOp(state, targs, numTargs, op);
}
void applyReferenceMatrix(
QMatrix &state, int* ctrls, int numCtrls, int *targs, int numTargs, QMatrix op
) {
// for density matrices, op is left-multiplied only
int numQubits = calcLog2(state.size());
QMatrix leftOp = getFullOperatorMatrix(ctrls, numCtrls, targs, numTargs, op, numQubits);
state = leftOp * state;
}
void applyReferenceMatrix(
QMatrix &state, int *targs, int numTargs, QMatrix op
) {
applyReferenceMatrix(state, NULL, 0, targs, numTargs, op);
}
bool areEqual(Qureg qureg1, Qureg qureg2, qreal precision) {
DEMAND( qureg1.isDensityMatrix == qureg2.isDensityMatrix );
DEMAND( qureg1.numAmpsTotal == qureg2.numAmpsTotal );
copyStateFromGPU(qureg1);
copyStateFromGPU(qureg2);
syncQuESTEnv(QUEST_ENV);
// loop terminates when areEqual = 0
int ampsAgree = 1;
for (long long int i=0; ampsAgree && i<qureg1.numAmpsPerChunk; i++)
ampsAgree = (
absReal(qureg1.stateVec.real[i] - qureg2.stateVec.real[i]) < precision
&& absReal(qureg1.stateVec.imag[i] - qureg2.stateVec.imag[i]) < precision);
// if one node's partition wasn't equal, all-nodes must report not-equal
int allAmpsAgree = ampsAgree;
#ifdef DISTRIBUTED_MODE
MPI_Allreduce(&sAgree, &allAmpsAgree, 1, MPI_INT, MPI_LAND, MPI_COMM_WORLD);
#endif
return allAmpsAgree;
}
bool areEqual(Qureg qureg1, Qureg qureg2) {
return areEqual(qureg1, qureg2, REAL_EPS);
}
bool areEqual(Qureg qureg, QVector vec, qreal precision) {
DEMAND( !qureg.isDensityMatrix );
DEMAND( (int) vec.size() == qureg.numAmpsTotal );
copyStateFromGPU(qureg);
syncQuESTEnv(QUEST_ENV);
// the starting index in vec of this node's qureg partition.
long long int startInd = qureg.chunkId * qureg.numAmpsPerChunk;
int ampsAgree = 1;
for (long long int i=0; i<qureg.numAmpsPerChunk; i++) {
qreal realDif = absReal(qureg.stateVec.real[i] - real(vec[startInd+i]));
qreal imagDif = absReal(qureg.stateVec.imag[i] - imag(vec[startInd+i]));
if (realDif > precision || imagDif > precision) {
ampsAgree = 0;
// debug
char buff[200];
sprintf(buff, "Disagreement at %lld of (%s) + i(%s):\n\t%s + i(%s) VS %s + i(%s)\n",
startInd+i,
REAL_STRING_FORMAT, REAL_STRING_FORMAT, REAL_STRING_FORMAT,
REAL_STRING_FORMAT, REAL_STRING_FORMAT, REAL_STRING_FORMAT);
printf(buff,
realDif, imagDif,
qureg.stateVec.real[i], qureg.stateVec.imag[i],
real(vec[startInd+i]), imag(vec[startInd+i]));
break;
}
}
// if one node's partition wasn't equal, all-nodes must report not-equal
int allAmpsAgree = ampsAgree;
#ifdef DISTRIBUTED_MODE