-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathmodeling_qwen.py
1426 lines (1236 loc) · 57 KB
/
modeling_qwen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import importlib
import math
import shutil
import pathlib
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator, Dict
import os
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import warnings
from torch.cuda.amp import autocast
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
from transformers.generation.logits_process import LogitsProcessorList
if TYPE_CHECKING:
from transformers.generation.streamers import BaseStreamer
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
try:
from einops import rearrange
except ImportError:
rearrange = None
from torch import nn
SUPPORT_CUDA = torch.cuda.is_available()
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
from .configuration_qwen import QWenConfig
from .qwen_generation_utils import (
HistoryType,
make_context,
decode_tokens,
get_stop_words_ids,
StopWordsLogitsProcessor,
)
from .audio import AudioEncoder
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "qwen"
_CONFIG_FOR_DOC = "QWenConfig"
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
_ERROR_BAD_CHAT_FORMAT = """\
We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
"""
_SENTINEL = object()
_ERROR_STREAM_IN_CHAT = """\
Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
"""
_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
"""
apply_rotary_emb_func = None
rms_norm = None
flash_attn_unpadded_func = None
def _import_flash_attn():
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
try:
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
apply_rotary_emb_func = __apply_rotary_emb_func
except ImportError:
logger.warn(
"Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
)
try:
from flash_attn.ops.rms_norm import rms_norm as __rms_norm
rms_norm = __rms_norm
except ImportError:
logger.warn(
"Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
)
try:
import flash_attn
if not hasattr(flash_attn, '__version__'):
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
else:
if int(flash_attn.__version__.split(".")[0]) >= 2:
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
else:
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
flash_attn_unpadded_func = __flash_attn_unpadded_func
except ImportError:
logger.warn(
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
"https://github.com/Dao-AILab/flash-attention"
)
def quantize_cache_v(fdata, bits, qmax, qmin):
# b, s, head, h-dim->b, head, s, h-dim
qtype = torch.uint8
device = fdata.device
shape = fdata.shape
fdata_cal = torch.flatten(fdata, 2)
fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
# Compute params
if qmax.device != fmax.device:
qmax = qmax.to(device)
qmin = qmin.to(device)
scale = (fmax - fmin) / (qmax - qmin)
zero = qmin - fmin / scale
scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
# Quantize
res_data = fdata / scale + zero
qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
return qdata.contiguous(), scale, zero
def dequantize_cache_torch(qdata, scale, zero):
data = scale * (qdata - zero)
return data
class FlashSelfAttention(torch.nn.Module):
def __init__(
self,
causal=False,
softmax_scale=None,
attention_dropout=0.0,
):
super().__init__()
assert flash_attn_unpadded_func is not None, (
"Please install FlashAttention first, " "e.g., with pip install flash-attn"
)
assert (
rearrange is not None
), "Please install einops first, e.g., with pip install einops"
self.causal = causal
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def unpad_input(self, hidden_states, attention_mask):
valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
hidden_states = hidden_states[indices]
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
def pad_input(self, hidden_states, indices, batch, seqlen):
output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
dtype=hidden_states.dtype)
output[indices] = hidden_states
return rearrange(output, '(b s) ... -> b s ...', b=batch)
def forward(self, q, k, v, attention_mask=None):
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
assert all((i.is_cuda for i in (q, k, v)))
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = k.shape[1]
seqlen_out = seqlen_q
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
cu_seqlens_q = torch.arange(
0,
(batch_size + 1) * seqlen_q,
step=seqlen_q,
dtype=torch.int32,
device=q.device,
)
if batch_size > 1 and attention_mask is not None:
k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
if q.size(0) == v.size(0):
q = q[indices_k]
cu_seqlens_q = cu_seqlens_k
seqlen_q = seqlen_k
v = v[indices_k]
else:
cu_seqlens_k = torch.arange(
0,
(batch_size + 1) * seqlen_k,
step=seqlen_k,
dtype=torch.int32,
device=q.device,
)
if self.training:
assert seqlen_k == seqlen_q
is_causal = self.causal
dropout_p = self.dropout_p
else:
is_causal = seqlen_q == seqlen_k
dropout_p = 0
output = flash_attn_unpadded_func(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_k,
seqlen_q,
seqlen_k,
dropout_p,
softmax_scale=self.softmax_scale,
causal=is_causal,
)
if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
output = self.pad_input(output, indices_k, batch_size, seqlen_out)
else:
new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
output = output.view(new_shape)
return output
class QWenAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
self.seq_length = config.seq_length
self.hidden_size = config.hidden_size
self.split_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.use_flash_attn = config.use_flash_attn
self.scale_attn_weights = True
self.projection_size = config.kv_channels * config.num_attention_heads
assert self.projection_size % config.num_attention_heads == 0
self.hidden_size_per_attention_head = (
self.projection_size // config.num_attention_heads
)
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
self.c_proj = nn.Linear(
config.hidden_size, self.projection_size, bias=not config.no_bias
)
self.is_fp32 = not (config.bf16 or config.fp16)
if (
self.use_flash_attn
and flash_attn_unpadded_func is not None
and not self.is_fp32
):
self.core_attention_flash = FlashSelfAttention(
causal=True, attention_dropout=config.attn_dropout_prob
)
self.bf16 = config.bf16
self.use_dynamic_ntk = config.use_dynamic_ntk
self.use_logn_attn = config.use_logn_attn
logn_list = [
math.log(i, self.seq_length) if i > self.seq_length else 1
for i in range(1, 32768)
]
logn_tensor = torch.tensor(logn_list)[None, :, None, None]
self.register_buffer("logn_tensor", logn_tensor, persistent=False)
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
cache_dtype = torch.float
if self.bf16:
cache_dtype=torch.bfloat16
elif config.fp16:
cache_dtype = torch.float16
self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
if config.use_cache_quantization and config.use_cache_kernel:
# pre check if the support files existing
module_root = pathlib.Path(__file__).parent
src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
if any(not (module_root/src).is_file() for src in src_files):
warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
self.cache_kernels = None
else:
try:
from .cpp_kernels import cache_autogptq_cuda_256
self.cache_kernels = cache_autogptq_cuda_256
except ImportError:
warnings.warn("Failed to import KV cache kernels.")
self.cache_kernels = None
def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
device = query.device
if self.use_cache_quantization:
qk, qk_scale, qk_zero = key
if self.use_cache_kernel and self.cache_kernels is not None:
shape = query.shape[:-1] + (qk.shape[-2],)
attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
self.cache_kernels.vecquant8matmul_batched_faster_old(
query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
qk.transpose(-1, -2).contiguous(),
attn_weights,
qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
# attn_weights = attn_weights.to(query.dtype).contiguous()
else:
key = dequantize_cache_torch(qk, qk_scale, qk_zero)
attn_weights = torch.matmul(query, key.transpose(-1, -2))
else:
attn_weights = torch.matmul(query, key.transpose(-1, -2))
if self.scale_attn_weights:
if self.use_cache_quantization:
size_temp = value[0].size(-1)
else:
size_temp = value.size(-1)
attn_weights = attn_weights / torch.full(
[],
size_temp ** 0.5,
dtype=attn_weights.dtype,
device=attn_weights.device,
)
if self.use_cache_quantization:
query_length, key_length = query.size(-2), key[0].size(-2)
else:
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = registered_causal_mask[
:, :, key_length - query_length : key_length, :key_length
]
mask_value = torch.finfo(attn_weights.dtype).min
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
attn_weights.device
)
attn_weights = torch.where(
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
if self.softmax_in_fp32:
attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
else:
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.type(query.dtype)
attn_weights = self.attn_dropout(attn_weights)
if head_mask is not None:
attn_weights = attn_weights * head_mask
if self.use_cache_quantization:
qv, qv_scale, qv_zero = value
if self.use_cache_kernel and self.cache_kernels is not None:
shape = attn_weights.shape[:-1] + (query.shape[-1],)
attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
qv.contiguous(), # dtype: int32
attn_output,
qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
if attn_output.dtype != query.dtype:
attn_output = attn_output.to(query.dtype)
attn_weights = attn_weights.to(query.dtype)
else:
value = dequantize_cache_torch(qv, qv_scale, qv_zero)
attn_output = torch.matmul(attn_weights, value)
else:
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2)
return attn_output, attn_weights
def _split_heads(self, tensor, num_heads, attn_head_size):
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor
def _merge_heads(self, tensor, num_heads, attn_head_size):
tensor = tensor.contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
):
mixed_x_layer = self.c_attn(hidden_states)
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if rotary_pos_emb_list is not None:
cur_len = query.shape[1]
if len(rotary_pos_emb_list) == 1:
rotary_pos_emb = rotary_pos_emb_list[0]
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query = apply_rotary_pos_emb(query, q_pos_emb)
key = apply_rotary_pos_emb(key, k_pos_emb)
else:
query_list = []
key_list = []
for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
query = torch.cat(query_list, dim=0)
key = torch.cat(key_list, dim=0)
if self.use_cache_quantization:
key = quantize_cache_v(key.permute(0, 2, 1, 3),
bits=8,
qmin=self.cache_qmin,
qmax=self.cache_qmax)
value = quantize_cache_v(value.permute(0, 2, 1, 3),
bits=8,
qmin=self.cache_qmin,
qmax=self.cache_qmax)
if layer_past is not None:
past_key, past_value = layer_past[0], layer_past[1]
if self.use_cache_quantization:
# use_cache_quantization:
# present=((q_key,key_scale,key_zero_point),
# (q_value,value_scale,value_zero_point))
key = (torch.cat((past_key[0], key[0]), dim=2),
torch.cat((past_key[1], key[1]), dim=2),
torch.cat((past_key[2], key[2]), dim=2))
value = (torch.cat((past_value[0], value[0]), dim=2),
torch.cat((past_value[1], value[1]), dim=2),
torch.cat((past_value[2], value[2]), dim=2))
else:
# not use_cache_quantization:
# present=(key,value)
key = torch.cat((past_key, key), dim=1)
value = torch.cat((past_value, value), dim=1)
if use_cache:
present = (key, value)
else:
present = None
if self.use_logn_attn and not self.training:
if self.use_cache_quantization:
seq_start = key[0].size(2) - query.size(1)
seq_end = key[0].size(2)
else:
seq_start = key.size(1) - query.size(1)
seq_end = key.size(1)
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
query = query * logn_tensor.expand_as(query)
if (
self.use_flash_attn
and flash_attn_unpadded_func is not None
and not self.is_fp32
and query.is_cuda
):
q, k, v = query, key, value
attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
else:
registered_causal_mask = torch.tril(
torch.ones((key.size(1), key.size(1)), dtype=torch.bool, device=key.device)
).view(1, 1, key.size(1), key.size(1))
query = query.permute(0, 2, 1, 3)
if not self.use_cache_quantization:
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
if (
registered_causal_mask is None
and self.use_flash_attn
and flash_attn_unpadded_func is not None
and not self.is_fp32
and not query.is_cuda
):
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
if not self.use_cache_quantization and SUPPORT_TORCH2:
causal_mask = registered_causal_mask[
:, :, key.size(-2) - query.size(-2): key.size(-2), :key.size(-2)
]
if attention_mask is not None:
attention_mask = attention_mask.expand(
-1, -1, causal_mask.size(2), -1
).masked_fill(~causal_mask, torch.finfo(query.dtype).min)
else:
attention_mask = causal_mask
attn_output = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask
).transpose(1, 2)
attn_weight = None
else:
attn_output, attn_weight = self._attn(
query, key, value, registered_causal_mask, attention_mask, head_mask
)
context_layer = self._merge_heads(
attn_output, self.num_heads, self.head_dim
)
attn_output = self.c_proj(context_layer)
outputs = (attn_output, present)
if output_attentions:
if (
self.use_flash_attn
and flash_attn_unpadded_func is not None
and not self.is_fp32
):
raise ValueError("Cannot output attentions while using flash-attn")
else:
outputs += (attn_weight,)
return outputs
class QWenMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.w1 = nn.Linear(
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
)
self.w2 = nn.Linear(
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
)
ff_dim_in = config.intermediate_size // 2
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
def forward(self, hidden_states):
a1 = self.w1(hidden_states)
a2 = self.w2(hidden_states)
intermediate_parallel = a1 * F.silu(a2)
output = self.c_proj(intermediate_parallel)
return output
class QWenBlock(nn.Module):
def __init__(self, config):
super().__init__()
hidden_size = config.hidden_size
self.bf16 = config.bf16
self.ln_1 = RMSNorm(
hidden_size,
eps=config.layer_norm_epsilon,
)
self.attn = QWenAttention(config)
self.ln_2 = RMSNorm(
hidden_size,
eps=config.layer_norm_epsilon,
)
self.mlp = QWenMLP(config)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
layernorm_output = self.ln_1(hidden_states)
attn_outputs = self.attn(
layernorm_output,
rotary_pos_emb_list,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:]
residual = hidden_states
layernorm_input = attn_output + residual
layernorm_output = self.ln_2(layernorm_input)
residual = layernorm_input
mlp_output = self.mlp(layernorm_output)
hidden_states = residual + mlp_output
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs
class QWenPreTrainedModel(PreTrainedModel):
config_class = QWenConfig
base_model_prefix = "transformer"
is_parallelizable = False
supports_gradient_checkpointing = True
_no_split_modules = ["QWenBlock"]
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, RMSNorm):
module.weight.data.fill_(1.0)
for name, p in module.named_parameters():
if name == "c_proj.weight":
p.data.normal_(
mean=0.0,
std=(
self.config.initializer_range
/ math.sqrt(2 * self.config.num_hidden_layers)
),
)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, QWenModel):
module.gradient_checkpointing = value
class QWenModel(QWenPreTrainedModel):
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
def __init__(self, config):
super().__init__(config)
self.vocab_size = config.vocab_size
self.num_hidden_layers = config.num_hidden_layers
self.embed_dim = config.hidden_size
self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
self.gradient_checkpointing = False
self.use_dynamic_ntk = config.use_dynamic_ntk
self.seq_length = config.seq_length
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
self.drop = nn.Dropout(config.emb_dropout_prob)
if config.rotary_pct == 1.0:
self.rotary_ndims = None
else:
assert config.rotary_pct < 1
self.rotary_ndims = int(
config.kv_channels * config.rotary_pct
)
dim = (
self.rotary_ndims
if self.rotary_ndims is not None
else config.kv_channels
)
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
self.use_flash_attn = config.use_flash_attn
self.is_fp32 = not (config.bf16 or config.fp16)
self.h = nn.ModuleList(
[
QWenBlock(
config
)
for i in range(config.num_hidden_layers)
]
)
self.ln_f = RMSNorm(
self.embed_dim,
eps=config.layer_norm_epsilon,
)
self.audio = AudioEncoder(**config.audio)
self.post_init()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def get_ntk_alpha(self, true_seq_len):
context_value = math.log(true_seq_len / self.seq_length, 2) + 1
ntk_alpha = 2 ** math.ceil(context_value) - 1
ntk_alpha = max(ntk_alpha, 1)
return ntk_alpha
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
audio_info: Dict = None
):
if past_key_values is None and torch.any(input_ids == self.config.audio['audio_start_id']):
bos_pos = torch.where(input_ids == self.config.audio['audio_start_id'])
eos_pos = torch.where(input_ids == self.config.audio['audio_start_id'] + 1)
assert (bos_pos[0] == eos_pos[0]).all()
audio_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
if isinstance(audio_info, Dict):
audios = audio_info["input_audios"]
audio_span_tokens = audio_info["audio_span_tokens"]
input_audio_lengths = audio_info["input_audio_lengths"]
audios = self.audio.encode(audios,input_audio_lengths, audio_span_tokens)
else:
audios = torch.concat([_["input_audios"] for _ in audio_info])
input_audio_lengths = torch.concat([_["input_audio_lengths"] for _ in audio_info])
audio_span_tokens = []
for _ in audio_info:
audio_span_tokens.extend(_['audio_span_tokens'])
audios = self.audio.encode(audios, input_audio_lengths, audio_span_tokens)
else:
audios = None
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
if self.use_cache_quantization:
past_length = past_key_values[0][0][0].size(2)
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype)
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
encoder_attention_mask = None
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
kv_seq_len = hidden_states.size()[1]
if past_key_values[0] is not None:
# past key values[0][0] shape: bs * seq_len * head_num * dim
if self.use_cache_quantization:
kv_seq_len += past_key_values[0][0][0].shape[2]
else:
kv_seq_len += past_key_values[0][0].shape[1]
if self.training or not self.use_dynamic_ntk:
ntk_alpha_list = [1.0]
elif kv_seq_len != hidden_states.size()[1]:
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
else:
ntk_alpha_list = []
if attention_mask is not None and kv_seq_len > self.seq_length:
true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
for i in range(hidden_states.size()[0]):
true_seq_len = true_seq_lens[i].item()
ntk_alpha = self.get_ntk_alpha(true_seq_len)
ntk_alpha_list.append(ntk_alpha)
else:
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
ntk_alpha_list.append(ntk_alpha)
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
rotary_pos_emb_list = [
self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
]
hidden_states = self.drop(hidden_states)
if audios is not None:
for idx, (i, a, b) in enumerate(audio_pos):
hidden_states[i][a : b+1] = audios[idx]
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
rotary_pos_emb_list,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
rotary_pos_emb_list=rotary_pos_emb_list,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class QWenLMHeadModel(QWenPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
def __init__(self, config):
super().__init__(config)
assert (
config.bf16 + config.fp16 + config.fp32 <= 1
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
if autoset_precision:
if SUPPORT_BF16:
logger.warn(
"The model is automatically converting to bf16 for faster inference. "
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
)
config.bf16 = True
elif SUPPORT_FP16:
logger.warn(
"The model is automatically converting to fp16 for faster inference. "
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
)
config.fp16 = True
else:
config.fp32 = True
if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
if config.fp32:
if SUPPORT_BF16:
logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
elif SUPPORT_FP16:
logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
if config.use_flash_attn == "auto":
if config.bf16 or config.fp16:
logger.warn("Try importing flash-attention for faster inference...")
config.use_flash_attn = True
else:
config.use_flash_attn = False