-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmds.py
executable file
·237 lines (193 loc) · 8.7 KB
/
mds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python
#filename: mds.py
import os
import sys
import argparse
import mdtraj as md
import numpy as np
from sklearn.metrics import euclidean_distances
from sklearn.manifold import MDS
from lib.write_plot import write_plots, write_pcs, write_fig
from lib.traj_info import trajectory_info, get_internal_coordinates, get_trajectory, get_cosine, print_kmo
from lib.utils import welcome_msg
def main():
return;
#==============================================================================#
# MDS MD
#
# This programe performs the MDS on a MD trajectory
#
# Author : Bilal Nizami
# Rhodes University, 2017
#==============================================================================#
##===============================================================================
## Welcome message
##===============================================================================
title='MDS MD'
welcome_msg(title, "Bilal Nizami")
#==============================================================================
# Setting the options
#==============================================================================
def get_options():
parser = argparse.ArgumentParser(usage='%(prog)s -t <MD trajectory> -p <topology file>')
parser.add_argument("-t", "--trj", dest="trj", help="file name of the MD trajectory")
parser.add_argument("-p", "--top", dest="topology", help="topology file")
parser.add_argument("-out", "--out", dest="out_dir", help="Name of the output directory. Default is out")
parser.add_argument("-mt", "--mds_type", dest="mds_type", help="Type of MDS. Options are nm=non-metric, metric=metric")
parser.add_argument("-dt", "--dissimilarity_type", dest="dissimilarity_type", help="Type of dissimilarity matrix to use. euc = Euclidean distance between internal coordinates, rmsd= pairwise RMSD. Default is rmsd")
parser.add_argument("-ag", "--ag", dest="atm_grp", help="group of atom for MDS. Default is C alpha atoms. Other options are :" "all= all atoms, backbone = backbone atoms, CA= C alpha atoms, protein= protein's atoms")
parser.add_argument("-ct", "--coordinate_type", dest="coordinate_type", help="Internal coordinates type. Default is pairwise distance")
parser.add_argument("-ai", "--atom_indices", dest="atom_indices", help="group of atom for pairwise distance. Default is C alpha atoms. Other options are :" "all= all atoms, backbone = backbone atoms, alpha= C alpha atoms, heavy= all non hydrogen atoms, minimal=CA,CB,C,N,O atoms")
args = parser.parse_args()
if args.out_dir == None:
out=args.trj
args.out_dir=out
if args.trj is None:
print ('ERROR: Missing trajectory argument.... :( \nPlease see the help by running \n\nsystem_setup.py -h\n\n ')
parser.print_help()
sys.exit(1)
if not os.path.exists(args.trj ):
print ('\nERROR: {0} not found....:( Please check the path or filename\n' .format(args.trj ))
#parser.print_help()
sys.exit(1)
if not os.path.exists(args.topology):
print ('\nERROR: {0} not found....:( Please check the path or filename\n' .format(args.topology ))
#parser.print_help()
sys.exit(1)
if args.topology is None:
print ('ERROR: Missing toplogy argument.... :( \nPlease see the help by running \n mds.py -h\n\n ')
parser.print_help()
sys.exit(1)
if args.dissimilarity_type not in ('rmsd', 'euc', None):
print ('ERROR: no such option as', args.dissimilarity_type, 'for flag -dt \nPlease see the help by running \n mds.py -h\n\n ')
sys.exit(1)
if args.mds_type == None:
print ('No MDS type given... performing metric MDS...')
args.mds_type='metric'
if args.mds_type not in ('nm', 'metric', None):
print ('ERROR: no such option as', args.mds_type, 'for flag -mt \nPlease see the usage\n\n ')
sys.exit(1)
if args.coordinate_type not in ('distance', 'phi', 'psi', 'angle', None):
print ('ERROR: no such option as', args.coordinate_type, 'for flag -ct \nPlease see the usage\n\n ')
parser.print_help()
sys.exit(1)
if args.atm_grp == None:
print ('No atom selected. MDS will be performed on C alpha atoms ')
args.atm_grp = 'CA' # set to default C-alpha atoms
if args.atm_grp not in ('all', 'CA', 'backbone', 'protein'):
print ('ERROR: no such option as', args.atm_grp, 'for flag -at \nPlease see the usage\n\n ')
sys.exit(1)
if args.dissimilarity_type == 'euc':
if args.atom_indices == None:
print ('No atom selected for pairwise distance. pairwise distance of C alpha atoms will be used')
args.atom_indices='alpha'
if args.atom_indices not in ('all', 'alpha', 'backbone', 'minimal', 'heavy', None):
print ('ERROR: no such option as', args.atom_indices, 'for flag -ai \nPlease see the usage\n\n ')
sys.exit(1)
if args.dissimilarity_type == None or args.dissimilarity_type == 'rmsd':
if args.atom_indices != None:
print ('\nWARNING: -ai', args.atom_indices, ' ,is meaningless with -dt set to rmsd \n')
return args;
args=get_options()
#=======================================
# assign the passed arguments and read the trajectory
#=======================================
traj = args.trj
topology = args.topology
#pca_traj = md.load(traj, top=topology)
print ('Reading trajectory ', args.trj, '...')
try:
pca_traj = md.load(traj, top=topology)
except:
raise IOError('Could not open trajectory {0} for reading. \n' .format(traj))
top = pca_traj.topology
atm_name=args.atm_grp
sele_grp = get_trajectory(atm_name, top)
atom_indices=args.atom_indices
# take the input trj name for output directory
out_dir=args.out_dir
out_dir=out_dir.split('/')
out_dir=out_dir[-1]
out_dir='out_'+out_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
#else:
# print out_dir, 'already exist. Can not overwrite the output directory!\n'
# sys.exit(1)
print ('Results will be written in ', out_dir)
## =============================
# print trajectory info
#===================================
trajectory_info(pca_traj, traj, atm_name, sele_grp)
# print KMO
print_kmo(pca_traj, traj, atm_name, sele_grp)
def get_pair_rmsd(pca_traj, sele_grp):
'pair wise RMSD over all the frames, return a square matrix of pairwise rmsd'
pair_rmsd=np.empty((pca_traj.n_frames, pca_traj.n_frames))
for i in range(pca_traj.n_frames):
pair_rmsd[i]=md.rmsd(pca_traj, pca_traj, i, atom_indices=sele_grp)
pair_rmsd=(pair_rmsd+pair_rmsd.transpose())/2 ## due to precision level matrix might not evaluate as symmetric, hence to make it symmetric
return pair_rmsd;
#============================================
#
# Multidimensional scaling
#
#=============================================
def mds(input, type):
'metric and nonmetric Multidimensional scaling'
seed = np.random.RandomState(seed=1)
#np.savetxt('mds_input.txt', input) ## testing value error
if type == 'nm':
nmds=MDS(n_components=100, max_iter=3000, metric=False, random_state=seed, dissimilarity="precomputed")
print ("Performing non-metric MDS..")
npos=nmds.fit_transform(input)
# write PC plots
write_plots('nmds_projection', npos, out_dir)
title='nMDS Projection'
write_fig('nmds_projection', npos, out_dir, title)
# cosine content
pc1_cos=get_cosine(npos, 0)
print ('cosine content of first PC=',pc1_cos)
pc2_cos=get_cosine(npos, 1)
print ('cosine content of second PC=', pc2_cos)
pc3_cos=get_cosine(npos, 2)
print ('cosine content of 3rd PC=',pc3_cos)
pc4_cos=get_cosine(npos, 3)
print ('cosine content of 4th PC=', pc4_cos)
elif type == 'metric':
mmds = MDS(n_components=100, max_iter=3000, random_state=seed, dissimilarity="precomputed")
print ("Performing metric MDS..")
mpos = mmds.fit_transform(input)
# write PC plots
write_plots('mmds_projection', mpos, out_dir)
title='mMDS Projection'
write_fig('mmds_projection', mpos, out_dir, title)
# cosine content
pc1_cos=get_cosine(mpos, 0)
print ('cosine content of first PC=',pc1_cos)
pc2_cos=get_cosine(mpos, 1)
print ('cosine content of second PC=', pc2_cos)
pc3_cos=get_cosine(mpos, 2)
print ('cosine content of 3rd PC=',pc3_cos)
pc4_cos=get_cosine(mpos, 3)
print ('cosine content of 4th PC=', pc4_cos)
else:
print ('ERROR: Please check -mt flag options by running mds.py -h')
return;
type=args.mds_type
if args.dissimilarity_type == 'rmsd' or args.dissimilarity_type == None:
print ('using pairwise RMSD...')
pair_rmsd=get_pair_rmsd(pca_traj, sele_grp)
mds(pair_rmsd, type)
print ('FINISHED!')
if args.dissimilarity_type == 'euc':
if args.coordinate_type == None:
args.coordinate_type = "distance"
print ("Using pairwise distance by default")
print ('using Euclidean space of', args.coordinate_type)
int_cord=get_internal_coordinates(top, args.coordinate_type, pca_traj, atom_indices)
similarities = euclidean_distances(int_cord)
mds(similarities, type)
print ('FINISHED!')
if __name__=="__main__":
main()