-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path175_Google_Run_Markov_Chain.py
executable file
·77 lines (63 loc) · 2.34 KB
/
175_Google_Run_Markov_Chain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
This problem was asked by Google.
You are given a starting state start, a list of transition probabilities for a Markov chain,
and a number of steps num_steps. Run the Markov chain starting from start for num_steps
and compute the number of times we visited each state.
For example, given the starting state a, number of steps 5000, and the following transition probabilities:
[
('a', 'a', 0.9),
('a', 'b', 0.075),
('a', 'c', 0.025),
('b', 'a', 0.15),
('b', 'b', 0.8),
('b', 'c', 0.05),
('c', 'a', 0.25),
('c', 'b', 0.25),
('c', 'c', 0.5)
]
One instance of running this Markov chain might produce { 'a': 3012, 'b': 1656, 'c': 332 }.
"""
import random
def parse_markov_chain(states):
state_transition_dict = {}
for state in states:
start, end, prob = state
if start not in state_transition_dict:
# the first list contains the possible path not a node and the second
# list contains the relative weight to transition to that node
state_transition_dict[start] = ([], [])
state_transition_dict[start][0].append(end)
state_transition_dict[start][1].append(prob)
else:
# # convert transition probabilities to cumulative weights
# # i.e [1,2,3,4,5] --> [1 3 6 10 15]
# # [0.5, 0.25, 0.25] --> [0.5, 0.75, 1.00]
# # this saves some time when running random.choices
state_transition_dict[start][0].append(end)
state_transition_dict[start][1].append(state_transition_dict[start][1][-1] + prob)
return state_transition_dict
def run_markov_model(states, runs=5000):
state_transition_dict = parse_markov_chain(states)
nodes = list(state_transition_dict.keys())
result = {node : 0 for node in nodes}
print(result)
starting_node = nodes[0]
print(starting_node)
nodes, weights = state_transition_dict[starting_node]
for _ in range(5000):
res = random.choices(nodes, cum_weights=weights)[0]
result[res] += 1
nodes, weights = state_transition_dict[res]
return result
if __name__ == '__main__':
print(run_markov_model([
('a', 'a', 0.9),
('a', 'b', 0.075),
('a', 'c', 0.025),
('b', 'a', 0.15),
('b', 'b', 0.8),
('b', 'c', 0.05),
('c', 'a', 0.25),
('c', 'b', 0.25),
('c', 'c', 0.5)
]))