-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path182_Facebook_Check_If_Graph_Minimally_Connected.py
executable file
·106 lines (85 loc) · 2.77 KB
/
182_Facebook_Check_If_Graph_Minimally_Connected.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
This problem was asked by Facebook.
A graph is minimally-connected if it is connected and there is no edge that can be removed while
still leaving the graph connected. For example, any binary tree is minimally-connected.
Given an undirected graph, check if the graph is minimally-connected.
You can choose to represent the graph as either an adjacency matrix or adjacency list.
"""
# idea : whenever a loop of paths forms the graph is not minimally connected.
# this is depth first search
def is_minimally_connected(adj_list:dict):
def helper(curr_node, next_paths, visited_paths):
state=True
for path in next_paths:
if len(visited_paths) > 0 and path == visited_paths[-1]:
continue # coming from node visited_paths[-1]
if path in visited_paths:
return False # created a loop, so not minimally connected
state = state and helper(path, adj_list[path], visited_paths + [curr_node])
return state # all nodes checked, so minimally connected
keys = list(adj_list.keys())
return helper(keys[0], adj_list[keys[0]], [])
# simpler approach see that in a minimally connected tree there can only be
# n - 1 edges. Eg:
# if number of nodes n = 1 the e = 0
# if number of nodes n = 2 the e = 1
# if number of nodes n = 3 the e = 2
def is_minimally_connected_redux(adj_list:dict):
number_of_nodes = len(adj_list)
number_edges = 0
visited_nodes = set()
for node, paths in adj_list.items():
visited_nodes.add(node)
for next_nodes in paths:
if next_nodes not in visited_nodes:
number_edges += 1
return number_of_nodes - 1 == number_edges
if __name__ == '__main__':
"""
a
/ \
b c
\ / \
d - e
"""
graph_1 = {
'a': ['b', 'c'],
'b': ['a', 'd'],
'c': ['a', 'd', 'e'],
'd': ['b', 'c', 'e'],
'e': ['c', 'd']
}
print(is_minimally_connected(graph_1))
print(is_minimally_connected_redux(graph_1))
"""
a
/ \
b c
/ \
d e
"""
graph_1 = {
'a': ['b', 'c'],
'b': ['a'],
'c': ['a', 'd', 'e'],
'd': ['c'],
'e': ['c']
}
print(is_minimally_connected(graph_1))
print(is_minimally_connected_redux(graph_1))
"""
a
/ \
b c
/ \
d - e
"""
graph_1 = {
'a': ['b', 'c'],
'b': ['a'],
'c': ['a', 'd', 'e'],
'd': ['c', 'e'],
'e': ['c', 'd']
}
print(is_minimally_connected(graph_1))
print(is_minimally_connected_redux(graph_1))