-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path49_Amazon_Max_Sum_Contiguous_Subsequence.py
executable file
·50 lines (36 loc) · 1.35 KB
/
49_Amazon_Max_Sum_Contiguous_Subsequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
This problem was asked by Amazon.
Given an array of numbers, find the maximum sum of any contiguous subarray of the array.
For example, given the array [34, -50, 42, 14, -5, 86], the maximum sum would be 137,
since we would take elements 42, 14, -5, and 86.
Given the array [-5, -1, -8, -9], the maximum sum would be 0, since we would not take any elements.
Do this in O(N) time.
"""
def find_max_sum(arr): # not optimal the 'sum' function mainly is slowing it down
if len(arr) == 1:
return 0 if arr[0] < 0 else arr[0]
sum_of_arr = sum(arr)
s1 = find_max_sum(arr[1:])
s2 = find_max_sum(arr[:-1])
if sum_of_arr > 0 and sum_of_arr > s1 and sum_of_arr > s2:
return sum_of_arr
elif s1 > s2 and s1>0:
return s1
elif s2 > s1 and s2>0:
return s2
else:
return 0
def find_max_sum_optimized(arr):
if not arr or max(arr) < 0:
return 0
curr_max_sum = arr[0]
overall_max_sum = arr[0]
for num in arr[1:]:
curr_max_sum = max(num, curr_max_sum+num)
overall_max_sum = max(curr_max_sum, overall_max_sum)
return overall_max_sum
if __name__ == '__main__':
# print(find_max_sum([34, -50, 42, 14, -5, 86]))
# print(find_max_sum([-5, -1, -8, -9]))
print(find_max_sum_optimized([34, -50, 42, 14, -5, 86]))
print(find_max_sum_optimized([-5, -1, -8, -9]))