-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyAND_gate_NN.py
77 lines (53 loc) · 1.49 KB
/
myAND_gate_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
# making an AND gate
# x1 x2 b | out
# -------------------
# 0 0 1 | 0
# 0 1 1 | 0
# 1 0 1 | 0
# 1 1 1 | 1
# b \
# \
# \
# x1---sigmoid neuron---->output
# /
# /
# x2/
def sigmoid(x, deriv = False):
if deriv:
return (x)*(1-x)
return 1/(1 + np.exp(-x))
# inputs
X = np.array([[0, 0, 1],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]])
# labels
y = np.array([0, 0, 0, 1])
# weights
np.random.seed(1)
theta = np.array([[0.2, 0.5, .6]]) # 2 * np.random.random((1, 3)) - 1
# learning rate
alpha = .5
for epoch in range(10000):
# forward propagation
z = np.dot(theta, X.T) # weighted sum of all inputs
a = sigmoid(z) # activation i.e output of neuron
# find the error of the outputs
# E = 0.5 (target - output)^2 =>> squared error function
E = .5 * np.square(y - a)
if (epoch % 1000) == 0:
print("Error at epoch#" + str(epoch) + ": " + str(np.mean(np.abs(E))))
# back propagation
partial_E = -(y - a) # partial derivative of Error function wrt 'a'
partial_a = sigmoid(a, deriv = True) # partial derivative of sigmoid wrt 'z'
Delta = np.multiply(partial_E, partial_a) # element-wise multiplication of partial_E and partial_a
# update weights
temp = np.dot(Delta, X)
theta -= alpha * temp
print("Output After Training:")
print(a)
print('\n\n Output rounded:\n')
print(np.rint(a))
print('\n\n Weights at the end: \n')
print(theta)