forked from valeoai/WoodScape
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_detection_semantic.py
143 lines (110 loc) · 6.09 KB
/
train_detection_semantic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
2D detection and Semantic segmentation training for OmniDet.
# author: Varun Ravi Kumar <[email protected]>
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; Authors provide no warranty with the software
and are not liable for anything.
"""
import time
from colorama import Fore, Style
from losses.mtl_losses import UncertaintyLoss
from models.semantic_decoder import SemanticDecoder
from train_detection import DetectionModelBase
from train_semantic import SemanticModel, SemanticInit
from train_utils.detection_utils import *
from train_utils.detection_utils import log_metrics
class DetectionSemanticModel(DetectionModelBase, SemanticInit):
def __init__(self, args):
super().__init__(args)
self.models["semantic"] = SemanticDecoder(self.encoder_channels,
n_classes=args.semantic_num_classes).to(self.device)
self.parameters_to_train += list(self.models["semantic"].parameters())
if args.use_multiple_gpu:
self.models["semantic"] = torch.nn.DataParallel(self.models["semantic"])
self.mtl_loss = UncertaintyLoss(tasks=self.args.train).to(self.device)
self.parameters_to_train += list(self.mtl_loss.parameters())
self.configure_optimizers()
self.pre_init()
def detection_semantic_train(self):
"""Trainer function for detection and semantic prediction"""
for self.epoch in range(self.args.epochs):
# switch to train mode
self.set_train()
data_loading_time = 0
gpu_time = 0
before_op_time = time.time()
for batch_idx, inputs in enumerate(self.train_loader):
data_loading_time += (time.time() - before_op_time)
before_op_time = time.time()
self.inputs_to_device(inputs)
# -- DETECTION AND SEMANTIC SEGMENTATION MODEL PREDICTIONS AND LOSS CALCULATIONS --
features = self.models["encoder"](inputs["color_aug", 0, 0])
outputs = self.models["semantic"](features)
# Detection decoder return the output of the three YOLO heads
outputs.update(self.models["detection"](features,
[self.args.input_width, self.args.input_height],
inputs[("detection_labels", 0)]))
# -- DETECTION LOSSES --
losses = dict()
detection_losses = self.criterion(outputs["yolo_output_dicts"],
outputs["yolo_target_dicts"])
losses.update(dict(detection_loss=detection_losses['detection_loss']))
# -- SEMANTIC LOSSES --
losses["semantic_loss"] = self.semantic_criterion(outputs["semantic", 0],
inputs["semantic_labels", 0, 0])
# -- DETECTION LOGS --
self.logs.update(log_metrics(outputs["yolo_output_dicts"],
outputs["yolo_target_dicts"], detection_losses))
losses["mtl_loss"] = self.mtl_loss(losses)
# -- COMPUTE GRADIENT AND DO OPTIMIZER STEP --
self.optimizer.zero_grad()
losses["mtl_loss"].mean().backward()
self.optimizer.step()
duration = time.time() - before_op_time
gpu_time += duration
if batch_idx % self.args.log_frequency == 0:
self.log_time(batch_idx, duration, losses["mtl_loss"].mean().cpu().data, data_loading_time,
gpu_time)
SemanticModel.semantic_statistics(self, "train", inputs, outputs, losses)
self.detection_statistics("train")
data_loading_time = 0
gpu_time = 0
if self.step % self.args.val_frequency == 0 and self.step != 0:
# -- SAVE SEMANTIC MODEL WITH BEST WEIGHTS BASED ON VALIDATION IoU --
self.save_best_semantic_weights()
# -- SAVE DETECTION MODEL WITH BEST WEIGHTS BASED ON VALIDATION mAP --
self.save_best_detection_weights()
self.step += 1
before_op_time = time.time()
self.lr_scheduler.step()
if (self.epoch + 1) % self.args.save_frequency == 0 and False:
self.save_model()
print("Training complete!")
@torch.no_grad()
def semantic_val(self):
"""Validate the semantic model"""
self.set_eval()
losses = dict()
for inputs in self.val_loader:
self.inputs_to_device(inputs)
features = self.models["encoder"](inputs["color_aug", 0, 0])
outputs = self.models["semantic"](features)
losses["semantic_loss"] = self.semantic_criterion(outputs["semantic", 0], inputs["semantic_labels", 0, 0])
_, predictions = torch.max(outputs["semantic", 0].data, 1)
self.metric.add(predictions, inputs["semantic_labels", 0, 0])
outputs["class_iou"], outputs["mean_iou"] = self.metric.value()
# Compute stats for the tensorboard
SemanticModel.semantic_statistics(self, "val", inputs, outputs, losses)
self.metric.reset()
del inputs, losses
self.set_train()
return outputs
def save_best_semantic_weights(self):
val_metrics = self.semantic_val()
print(f"{Fore.RED}epoch {self.epoch:>3} | Semantic IoU: {val_metrics['mean_iou']:.3f}{Style.RESET_ALL}")
if val_metrics["mean_iou"] >= self.best_semantic_iou:
print(f"{Fore.RED}=> Saving semantic segmentation model weights with mean_iou of"
f" {val_metrics['mean_iou']:.3f} at step {self.step} on {self.epoch} epoch.{Style.RESET_ALL}")
self.best_semantic_iou = val_metrics["mean_iou"]
if self.epoch > 50: # Weights are quite large! Sometimes, life is a compromise.
self.save_model()