-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmadelon_data.py
50 lines (36 loc) · 1.53 KB
/
madelon_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from numpy.core.multiarray import ndarray
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
DATA_PATH = './data/'
PATH = "MADELON/"
FULL_PATH = DATA_PATH + PATH
TEST_SIZE = 1 / 3
def save_madelon_npz() -> (ndarray, ndarray):
train_data_path = FULL_PATH + 'madelon_train.data'
train_resp_path = FULL_PATH + 'madelon_train.labels'
val_data_path = FULL_PATH + 'madelon_valid.data'
val_resp_path = FULL_PATH + 'madelon_valid.labels'
X_train = np.loadtxt(train_data_path)
y_train = np.loadtxt(train_resp_path)
X_test = np.loadtxt(val_data_path)
y_test = np.loadtxt(val_resp_path)
X = np.concatenate((X_train, X_test), axis=0)
y = np.concatenate((y_train, y_test), axis=0)
np.savez_compressed(FULL_PATH + "madelon", X=X, y=y.reshape(len(y), 1))
return X, y
def load_madelon_npz():
data = np.load(FULL_PATH + "madelon.npz")
X = data['X']
y = data['y']
enc = OneHotEncoder().fit(y)
y = enc.transform(y).astype('uint8').toarray()
return X, y
def train_test_split_normalize(X_: ndarray, y_: ndarray, test_size=TEST_SIZE, random_state=42) \
-> (ndarray, ndarray, ndarray, ndarray):
X_train_, X_test_, y_train_, y_test_ = train_test_split(X_, y_, test_size=test_size, random_state=random_state)
normalize = StandardScaler()
normalize.fit(X_train_)
X_train_ = normalize.transform(X_train_)
X_test_ = normalize.transform(X_test_)
return X_train_, X_test_, y_train_, y_test_