-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmadelon_set_motif_train.py
205 lines (149 loc) · 7.12 KB
/
madelon_set_motif_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import copy
import datetime
import logging
import os
import pickle
from multiprocessing import Pool
import numpy as np
import psutil
import scipy.io as sio
from numpy.core.multiarray import ndarray
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from nn_functions import Relu, Sigmoid, CrossEntropy, Tanh, MSE
from set_mlp_motif import SET_MLP
DATA_PATH = './data/'
PATH = "MADELON/"
FULL_PATH = DATA_PATH + PATH
FOLDER = "benchmarks_motif_madelon"
TEST_SIZE = 1 / 3
# TODO(Neil): Most of this can be combined with lung_classification as it is almost the same
def save_madelon_npz() -> (ndarray, ndarray):
train_data_path = FULL_PATH + 'madelon_train.data'
train_resp_path = FULL_PATH + 'madelon_train.labels'
val_data_path = FULL_PATH + 'madelon_valid.data'
val_resp_path = FULL_PATH + 'madelon_valid.labels'
X_train = np.loadtxt(train_data_path)
y_train = np.loadtxt(train_resp_path)
X_test = np.loadtxt(val_data_path)
y_test = np.loadtxt(val_resp_path)
X = np.concatenate((X_train, X_test), axis=0)
y = np.concatenate((y_train, y_test), axis=0)
np.savez_compressed(FULL_PATH + "madelon", X=X, y=y.reshape(len(y), 1))
return X, y
def load_madelon_npz():
data = np.load(FULL_PATH + "madelon.npz")
X = data['X']
y = data['y']
enc = OneHotEncoder().fit(y)
y = enc.transform(y).astype('uint8').toarray()
return X, y
def train_test_split_normalize(X_: ndarray, y_: ndarray, test_size=TEST_SIZE, random_state=42) \
-> (ndarray, ndarray, ndarray, ndarray):
X_train_, X_test_, y_train_, y_test_ = train_test_split(X_, y_, test_size=test_size, random_state=random_state)
normalize = StandardScaler()
normalize.fit(X_train_)
X_train_ = normalize.transform(X_train_)
X_test_ = normalize.transform(X_test_)
return X_train_, X_test_, y_train_, y_test_
def madelon_single_run(X_train_, X_test_, y_train_, y_test_, set_params_, run_id=0):
n_hidden_neurons_layer = set_params_['n_hidden_neurons_layer']
epochs = set_params_['epochs']
epsilon = set_params_['epsilon']
zeta = set_params_['zeta']
batch_size = set_params_['batch_size']
dropout_rate = set_params_['dropout_rate']
learning_rate = set_params_['learning_rate']
momentum = set_params_['momentum']
weight_decay = set_params_['weight_decay']
start_time = datetime.datetime.now()
# clf = MLPClassifier(random_state=1, max_iter=300).fit(X_train_, y_train_)
# clf = ExtraTreesClassifier()
# clf.fit(X_train_, y_train_)
# score = clf.score(X_test_, y_test_)
# print(f"SCORE: {score}")
set_mlp = SET_MLP(
(X_train_.shape[1], n_hidden_neurons_layer,n_hidden_neurons_layer,n_hidden_neurons_layer, y_train_.shape[1]),
(Relu,Relu,Relu, Tanh), epsilon=epsilon, init_network='normal')
set_metrics = set_mlp.fit(X_train_, y_train_, X_test_, y_test_, loss=CrossEntropy, epochs=epochs, zeta=zeta,
batch_size=batch_size,
dropout_rate=dropout_rate, learning_rate=learning_rate, momentum=momentum,
weight_decay=weight_decay,
testing=True, run_id=run_id)
dt = datetime.datetime.now() - start_time
evolved_weights = set_mlp.weights_evolution
sample_epochs = [0, 5, 10, 20, 30, 40, 50, 75, 100, 200, 300, 399]
sample_weights = []
sample_set_metrics = []
for sample_epoch in sample_epochs:
sample_weights.append(evolved_weights[sample_epoch])
sample_set_metrics.append(set_metrics[sample_epoch])
run_result = {'run_id': run_id, 'set_params': copy.copy(set_params_),
'set_metrics': sample_set_metrics,
'evolved_weights': sample_weights, 'training_time': dt}
return run_result
def madelon_density_runs(run_id, set_params, density_levels, n_training_epochs, data, fname="", folder=""):
np.random.seed(run_id)
X_train, X_test, y_train, y_test = data
if os.path.isfile(fname):
with open(fname, "rb") as h:
results = pickle.load(h)
else:
results = {'density_levels': density_levels, 'runs': []}
for epsilon in density_levels:
logging.info(f"[run_id={run_id}] Starting SET-Sparsity: epsilon={epsilon}")
set_params['epsilon'] = epsilon
set_params['epochs'] = n_training_epochs
run_result = madelon_single_run(X_train, X_test, y_train, y_test, set_params, run_id=run_id)
results['runs'].append({'set_sparsity': epsilon, 'run': run_result})
fname = f"{folder}/set_mlp_density_run_{run_id}.pickle"
# save preliminary results
with open(fname, "wb") as h:
pickle.dump(results, h)
def madelon_train_set_differnt_densities(runs=10, n_training_epochs=100, set_sparsity_levels=None,
use_logical_cores=True,
folder=''):
set_params = {'n_hidden_neurons_layer': 1000,
'epochs': n_training_epochs,
'epsilon': 20, # set the sparsity level
'zeta': 0.3, # in [0..1]. Percentage of unimportant connections to be removed and replaced
'batch_size': 100, 'dropout_rate': 0, 'learning_rate': 0.01, 'momentum': 0.9, 'weight_decay': 0.00002}
X, y = load_madelon_npz()
start_test = datetime.datetime.now()
n_cores = psutil.cpu_count(logical=use_logical_cores)
with Pool(processes=n_cores) as pool:
futures = []
for i in range(runs):
remaining_density_levels = copy.copy(set_sparsity_levels)
# check if results already exist
fname = f"{folder}/set_mlp_madelon_density_run_{i}.pickle"
if os.path.isfile(fname):
with open(fname, "rb") as h:
result = pickle.load(h)
for el in result['runs']:
remaining_density_levels.remove(el['set_sparsity'])
data = train_test_split_normalize(X, y, test_size=TEST_SIZE, random_state=i)
futures.append(pool.apply_async(madelon_density_runs, (
i, set_params, remaining_density_levels, n_training_epochs, data, fname, folder)))
for i, future in enumerate(futures):
print(f'[run={i}] Starting job')
future.get()
print(f'-----------------------------[run={i}] Finished job')
delta_time = datetime.datetime.now() - start_test
print("-" * 30)
print(f"Finished the entire process after: {delta_time.seconds}s")
def test():
save_madelon_npz()
if __name__ == '__main__':
if not os.path.exists(FOLDER):
os.makedirs(FOLDER)
sub_folder = "benchmark_madelon"
date_format = "%d_%m_%Y_%H_%M_%S"
FOLDER = f"{FOLDER}/{sub_folder}_{datetime.datetime.now().strftime(date_format)}"
os.makedirs(FOLDER)
runs = 4
n_training_epochs = 400
set_sparsity_levels = [1, 2, 3, 4, 5, 6, 13, 32, 64, 128, 256]
logical_cores = False
madelon_train_set_differnt_densities(runs, n_training_epochs, set_sparsity_levels, use_logical_cores=logical_cores,
folder=FOLDER)