-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimilarity.py
45 lines (31 loc) ยท 1.86 KB
/
similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import torch
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.metrics.pairwise import cosine_similarity
def content_based_filtering_euclidean(content_id_list, embedding_matrix, sentence, embedder, topn):
encoded_input = embedder.tokenizer(sentence, padding = True, truncation = True, return_tensors = 'pt')
with torch.no_grad():
output = embedder.model(**encoded_input)
embedding = embedder.mean_pooling(output, encoded_input['attention_mask'])
sim_matrix = euclidean_distances(embedding, embedding_matrix)[0]
sorted_idx = np.argsort(sim_matrix)[:topn]
return content_id_list[sorted_idx]
def content_based_filtering_cosine(content_id_list, embedding_matrix, sentence, embedder, topn):
encoded_input = embedder.tokenizer(sentence, padding = True, truncation = True, return_tensors = 'pt')
with torch.no_grad():
output = embedder.model(**encoded_input)
embedding = embedder.mean_pooling(output, encoded_input['attention_mask'])
sim_matrix = cosine_similarity(embedding, embedding_matrix)[0]
sorted_idx = np.argsort(sim_matrix)[::-1][:topn]
return content_id_list[sorted_idx]
def content_based_filtering_jaccard(content_id_list, token_set_dict, sentence, embedder, topn):
encoded_input = embedder.tokenizer(sentence, padding = True, truncation = True, return_tensors = 'pt')
sentence_tokens = set(encoded_input['input_ids'].squeeze().numpy())
result = []
for content_id in content_id_list:
answer_tokens = token_set_dict[content_id]
intersection = answer_tokens.intersection(sentence_tokens)
similarity = len(intersection) / (len(sentence_tokens) + len(answer_tokens) - len(intersection))
result.append(similarity)
sorted_idx = np.argsort(np.array(result))[::-1][:topn]
return content_id_list[sorted_idx]