-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathClassifierFunctions2.py
229 lines (166 loc) · 6.67 KB
/
ClassifierFunctions2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import csv
import os
import numpy as np
import time
from matplotlib import pyplot as plt
from future.builtins.misc import input
from mendeleev import element
def choose_peaks(peaks,peak_h):
"""
prompt user to select which peaks to classify on
"""
d = peaks
maximum = len(d['d_spacing'])
plt.title('select peaks. Enter to stop.')
raw_choices = []
ax = plt.gca()
if ax.figure.canvas.manager not in plt._pylab_helpers.Gcf.figs.values():
raise ValueError('Window closed')
while True:
pts = []
pts = plt.ginput(100, timeout=-1)
print(pts)
print(len(pts))
index = []
print(pts)
for p in pts:
index.append(np.argmin(np.abs(d['d_spacing']-p[0])))
# else:
# index = [*range(0,maximum)]
index.sort()
for i in index:
peak_h[i][0].set_linewidth(5)
if ax.figure.canvas.manager not in plt._pylab_helpers.Gcf.figs.values():
raise ValueError('Window closed')
plt.title('Enter to keep peaks, or reselect points')
# time.sleep(1) # Wait a second
if plt.waitforbuttonpress():
break
#raw_choices = input("Choose which peaks you'd like to select separated by spaces.\n").split(" ")
raw_choices = index
temp_choices = []
for choice in raw_choices:
try:
temp_index = int(choice)
if temp_index > 0 and temp_index <= maximum and temp_index not in temp_choices:
temp_choices.append(temp_index)
else:
print("index {} outside of available peaks".format(temp_index))
except:
print("couldn't convert {} into an index".format(choice))
print(temp_choices)
temp_locs = {
"d_spacing":[d['d_spacing'][i-1] for i in temp_choices],
#"2theta":[theta[i-1] for i in temp_choices],
"vec":[d['vec'][i-1] for i in temp_choices]
}
return temp_locs
def provide_family():
"""
prompt user and ensure proper selection of base Crystal family
"""
family = None
while family is None:
temp_choice = input("Would you like to suggest a crystal family? yes or no\n")
if temp_choice =="yes":
family = temp_choice
elif temp_choice =="no":
family = temp_choice
else:
print("Invalid choice. Please choose yes or no\n")
return family
def write_to_csv(path, data_dict, prediction_per_level):
"""
save new row of results to csv
"""
# schema = ["file_name","family","confidence", "genus 1st pred","confidence", "species_1", "confidence", "species_2", "confidence", "genus 2nd pred","confidence","species_3", "confidence", "species_4", "confidence", "peaks"]
ppl = prediction_per_level
# if no file exists create a one and inform the user
if not os.path.exists(path):
schema = ["file_name"]
for k in range(ppl[0]):
schema.append("family_"+str(k+1))
schema.append("family_confidence_"+str(k+1))
for l in range(ppl[1]):
gn=k*ppl[1]+l
schema.append("genus_"+str(gn+1))
schema.append("genus_confidence_"+str(gn+1))
for m in range(ppl[2]):
schema.append("species_"+str(gn*ppl[2]+m+1))
schema.append("species_confidence_"+str(gn*ppl[2]+m+1))
schema.append("hall_"+str(gn*ppl[2]+m+1))
schema.append("peaks")
print("creating new output file {}".format(path))
with open(path, "w") as csv_file:
filewriter = csv.writer(csv_file, delimiter=",")
filewriter.writerow(schema)
row = []
row.append(data_dict["file_name"])
for k in range(ppl[0]):
row.append(data_dict["family_"+str(k+1)])
row.append(data_dict["fam_confidence_"+str(k+1)])
for l in range(ppl[1]):
gn=k*ppl[1]+l
row.append(data_dict["genus_"+str(gn+1)])
row.append(data_dict["gen_confidence_"+str(gn+1)])
for m in range(ppl[2]):
row.append(data_dict["species_"+str(gn*ppl[2]+m+1)])
row.append(data_dict["spec_confidence_"+str(gn*ppl[2]+m+1)])
row.append(data_dict["hall_"+str(gn*ppl[2]+m+1)])
row.append(data_dict["peaks"])
with open(path, "a") as csv_file:
filewriter = csv.writer(csv_file, delimiter=",")
filewriter.writerow(row)
def check_for_chemistry(session):
# tries to identify chemistry information from session file
if "chemistry" not in session or not session["chemistry"]:
return []
if "atomic_percentage" in session:
# print('percentage of each element by count')
chem_vec = session["atomic_percentage"]
elif "chemical_formula" in session:
# print('expected chemical formula')
chem_vec = str2chem(session["chemical_formula"])
tot_elem = 0
for cv in chem_vec:
tot_elem+=cv[1]
for k in range(len(chem_vec)):
chem_vec[k][1] /= tot_elem
elif "atomic_density" in session:
# print('percentage of each element by mass')
print("Warning: atomic density may not improve the accuracy, especially if atomic weights of the elements are significantly different")
chem_vec = session["atomic_density"]
elif "cemical_contents" in session:
# print('list of elements to expect')
cc = session["cemical_contents"]
chem_vec = []
for elem in cc:
chem_vec.append([element(elem).atomic_number, 1/len(cc)])
else:
print("not enough data to run chemistry prediction. Ignoring")
return []
return chem_vec
def str2chem(string):
elem_list = []
new_elem = False
prev_elem = ''
prev_num = ''
for k,c in enumerate(string):
if c.isdigit():
prev_num+=c
elif c.islower():
prev_elem+=c
if c.isupper() or k==len(string)-1:
if prev_elem:
try:
elem = element(prev_elem).atomic_number
except:
raise ValueError("Something wrong with Chemical formula input")
if prev_num:
num = int(prev_num)
else:
num = 1
elem_list.append([elem,num])
prev_elem = c
prev_num = ''
return elem_list