-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathgradient_calculation.py
326 lines (279 loc) · 15.2 KB
/
gradient_calculation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
from utils.registry import Registry
from utils.registry import parse_name
import difflib
import numpy as np
import scipy.stats as st
import torch.nn.functional as F
import re
def build_grad_calculator(grad_calculator_name):
"""
Transform an input string into the gradient calculator.
:param grad_calculator_name: A string describing the method of calculating gradient.
:return: a gradient calculator.
:raises: ValueError: if gradient calculator name is unknown.
"""
if grad_calculator_name:
try:
grad_calculator = Registry.lookup(f"gradient_calculation.{grad_calculator_name}")()
except SyntaxError as err:
raise ValueError(f"Syntax error on: {grad_calculator}") from err
return grad_calculator
def linbp_backw_resnet50(img, loss, conv_out_ls, ori_mask_ls, relu_out_ls, conv_input_ls, xp=1.0):
"""
This is the backward function for LinBP, modified based on the following source. Build upon I-FGSM framework,
the complete LinBP algorithm also emphasizes a novel forward function---LinBP(), defined in 'loss_function.py'.
link:
https://github.com/qizhangli/linbp-attack
citation:
@inproceedings{guo2020backpropagating,
title={Backpropagating Linearly Improves Transferability of Adversarial Examples.},
author={Guo, Yiwen and Li, Qizhang and Chen, Hao},
booktitle={NeurIPS},
year={2020}
}
"""
for i in range(-1, -len(conv_out_ls)-1, -1):
if i == -1:
grads = torch.autograd.grad(loss, conv_out_ls[i])
else:
grads = torch.autograd.grad((conv_out_ls[i+1][0], conv_input_ls[i+1][1]), conv_out_ls[i], grad_outputs=(grads[0], main_grad_norm))
normal_grad_2 = torch.autograd.grad(conv_out_ls[i][1], relu_out_ls[i][1], grads[1]*ori_mask_ls[i][2], retain_graph=True)[0]
normal_grad_1 = torch.autograd.grad(relu_out_ls[i][1], relu_out_ls[i][0], normal_grad_2 * ori_mask_ls[i][1], retain_graph=True)[0]
normal_grad_0 = torch.autograd.grad(relu_out_ls[i][0], conv_input_ls[i][1], normal_grad_1 * ori_mask_ls[i][0], retain_graph=True)[0]
del normal_grad_2, normal_grad_1
main_grad = torch.autograd.grad(conv_out_ls[i][1], conv_input_ls[i][1], grads[1])[0]
alpha = normal_grad_0.norm(p=2, dim=(1, 2, 3), keepdim=True) / main_grad.norm(p=2, dim=(1, 2, 3), keepdim=True)
main_grad_norm = xp * alpha * main_grad
input_grad = torch.autograd.grad((conv_out_ls[0][0], conv_input_ls[0][1]), img, grad_outputs=(grads[0], main_grad_norm))
return input_grad[0].data
@Registry.register("gradient_calculation.general")
def general_grad():
"""
This is a basic function for calculating gradient on adversarial examples:
$\nabla_x \mathcal{L}\left(f^{\prime \prime}\left(\mathcal{T}\left(x_t^*\right) ; \theta^{\prime
\prime}\right), y ; \mathbf{I}\right)$
"""
def _general_grad(args, iter, adv_img, true_label, target_label, grad_accumulate, grad_last,
input_trans_func, ensemble_models, loss_func):
"""
:param args: arguments
:param iter: the current step index
:param adv_img: a batch of adversarial examples to be updated
:param true_label: true labels of [adv_img]
:param target_label: target labels of [adv_img]
:param grad_accumulate: accumulated gradient, useful for momentum-based methods
:param grad_last: gradient at the last step
:param ensemble_models: a model list containing all ensembled surrogate models
:param loss_func: loss function
:param input_trans_func: input transformation function for pre-processing [adv_img] before feeding
them into [loss_func]
:return: gradient on adversarial examples [adv_img]
"""
n_samples = parse_name(difflib.get_close_matches('admix(strength=, n_samples=)', args.input_transformation.split('|'), 1, cutoff=0.1)[0])[2]\
['n_samples'] if 'admix' in args.input_transformation else 1
n_copies = parse_name(difflib.get_close_matches('SI(n_copies=)', args.input_transformation.split('|'), 1, cutoff=0.1)[0])[2]\
['n_copies'] if 'SI' in args.input_transformation else 1
grad_ls = []
for _ in range(n_samples):
for n_copies_iter in range(n_copies):
# apply image transformation
trans_img = input_trans_func(iter, adv_img, true_label, target_label, ensemble_models, grad_accumulate, grad_last, n_copies_iter)
# calculate loss
loss = loss_func(args, trans_img, true_label, target_label, ensemble_models)
# get gradient via backpropagation:nonlinear-BP / linear-BP
if args.backpropagation == 'nonlinear':
loss.backward()
gradient = adv_img.grad.clone()
adv_img.grad.zero_()
elif args.backpropagation == 'linear':
if 'vgg19_bn' in args.source_model_path[0]:
loss[0].backward()
gradient = adv_img.grad.clone()
adv_img.grad.zero_()
elif 'resnet50' in args.source_model_path[0]:
gradient = linbp_backw_resnet50(trans_img, loss[0], *loss[1])
else:
raise ValueError("Only support `liner` or `nonlinear` backpropagation mode.")
grad_ls.append(gradient)
multi_grad = torch.mean(torch.stack(grad_ls), dim=0)
return multi_grad
return _general_grad
@Registry.register("gradient_calculation.convolved_grad")
def convolved_grad(kerlen):
"""
This function is the core of TI-FGSM, modified based on the following source:
link:
https://github.com/dongyp13/Translation-Invariant-Attacks
citation:
@inproceedings{dong2019evading,
title={Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks},
author={Dong, Yinpeng and Pang, Tianyu and Su, Hang and Zhu, Jun},
booktitle={Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
year={2019}
}
The original license:
MIT License
Copyright 2017 Yinpeng Dong
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
def get_kernel(kernel_size):
# define gaussian kernel for TI
def gkern(kernlen=15, nsig=3):
x = np.linspace(-nsig, nsig, kernlen)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
return kernel
kernel = gkern(kernel_size, 3).astype(np.float32)
gaussian_kernel = np.stack([kernel, kernel, kernel])
gaussian_kernel = np.expand_dims(gaussian_kernel, 1)
gaussian_kernel = torch.from_numpy(gaussian_kernel).cuda()
return gaussian_kernel
def _convolved_grad(args, gradient, grad_accumulate, grad_var_last):
"""
The nature of TI method is convolving the gradient with a Gaussian kernel to calculate the gradient of
translated images efficiently, so TI operation belongs to the pipeline of 'gradient_calculation'. However, when
composing VT and TI, we'd like to apply TI after tuning gradient with variance which belongs to the category of
'update_dir_calculation'. Thus, the input/output of '_convolved_grad' must align with the input/output of
'update_dir_calculation' pipeline,
"""
gaussian_kernel = get_kernel(kernel_size=kerlen)
padding = int((kerlen - 1) / 2) # same padding
conv_grad = F.conv2d(gradient, gaussian_kernel, bias=None, stride=1, padding=(padding, padding), groups=3)
return conv_grad, grad_accumulate
return _convolved_grad
@Registry.register("get_variance")
def get_variance():
"""
This function is for calculating the variance in VT, modified based on the following source:
link:
https://github.com/JHL-HUST/VT
citation:
@inproceedings{wang2021enhancing,
title={Enhancing the transferability of adversarial attacks through variance tuning},
author={Wang, Xiaosen and He, Kun},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={1924--1933},
year={2021}
}
"""
def _get_variance(args, adv_img, true_label, target_label,
grad_accumulate, grad_last, grad_cur,
input_trans_func, ensemble_models, loss_func):
global_grad = 0
assert args.n_var_sample is not None, "Please assign a value for argument 'n_var_sample' if calculation of " \
"gradient variance is desired."
for c in range(args.n_var_sample):
neighbor_bound = 1.5 if args.norm_type == 'inf' else 0.015 if args.norm_type == '2' else None
adv_img_noise = adv_img + adv_img.new(adv_img.size()).uniform_(-neighbor_bound * args.epsilon, neighbor_bound * args.epsilon)
adv_img_noise.retain_grad()
gradient = general_grad()(args, 0, adv_img_noise, true_label, target_label, grad_accumulate, grad_last,
input_trans_func, ensemble_models, loss_func)
global_grad = global_grad + gradient
variance = global_grad / args.n_var_sample - grad_cur
return variance
return _get_variance
@Registry.register("gradient_calculation.skip_gradient")
def skip_gradient(gamma):
"""
This function is the core of SGM, modified based on the following source:
link:
https://github.com/csdongxian/skip-connections-matter
citation:
@inproceedings{wu2020skip,
title={Skip connections matter: On the transferability of adversarial examples generated with resnets},
author={Wu, Dongxian and Wang, Yisen and Xia, Shu-Tao and Bailey, James and Ma, Xingjun},
booktitle={ICLR},
year={2020}
}
The original license:
MIT License
Copyright (c) 2020 Dongxian Wu
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
def backward_hook(gamma):
# implement SGM through grad through ReLU
def _backward_hook(module, grad_in, grad_out):
if isinstance(module, torch.nn.ReLU):
return (gamma * grad_in[0],)
return _backward_hook
def backward_hook_mlp(gamma):
# implement SGM through grad through dropout
def _backward_hook(module, grad_in, grad_out):
if isinstance(module, torch.nn.Dropout):
return (gamma * grad_in[0],)
return _backward_hook
def backward_hook_norm(module, grad_in, grad_out):
# normalize the gradient to avoid gradient explosion or vanish
std = torch.std(grad_in[0])
return (grad_in[0] / std,)
def register_hook_for_resnet(model, arch, gamma):
# There is only 1 ReLU in Conv module of ResNet-18/34
# and 2 ReLU in Conv module ResNet-50/101/152
if arch in ['resnet50', 'resnet101', 'resnet152']:
gamma = np.power(gamma, 0.5)
backward_hook_sgm = backward_hook(gamma)
for name, module in model.named_modules():
if 'relu' in name and not '0.relu' in name:
module.register_backward_hook(backward_hook_sgm)
# e.g., 1.layer1.1, 1.layer4.2, ...
# if len(name.split('.')) == 3:
if len(name.split('.')) >= 2 and 'layer' in name.split('.')[-2]:
module.register_backward_hook(backward_hook_norm)
def register_hook_for_densenet(model, arch, gamma):
# There are 2 ReLU in Conv module of DenseNet-121/169/201.
gamma = np.power(gamma, 0.5)
backward_hook_sgm = backward_hook(gamma)
for name, module in model.named_modules():
if 'relu' in name and not 'transition' in name:
module.register_backward_hook(backward_hook_sgm)
def register_hook_for_vit(model, arch, gamma):
backward_hook_sgm = backward_hook_mlp(gamma)
for name, module in model.named_modules():
if 'dropout_1' in name and 'layer' in name and 'mlp' in name:
module.register_backward_hook(backward_hook_sgm)
elif 'dropout' in name and 'layer' in name and not 'mlp' in name:
module.register_backward_hook(backward_hook_sgm)
args = Registry._GLOBAL_REGISTRY['args']
source_models = Registry._GLOBAL_REGISTRY['source_models']
assert len(args.source_model_path) == 1, "Skip-gradient-method doesn't support ensemble attack."
a = re.match(r"^.+/pretrained/(\w+)$", args.source_model_path[0])
arch = a.groups()[0]
if arch in ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152']:
register_hook_for_resnet(next(source_models)[0], arch=arch, gamma=gamma)
elif arch in ['densenet121', 'densenet169', 'densenet201', 'densenet']:
register_hook_for_densenet(next(source_models)[0], arch=arch, gamma=gamma)
elif arch in ['vit_b_16']:
register_hook_for_vit(next(source_models)[0], arch=arch, gamma=gamma)
else:
raise ValueError('Current code only supports resnet/densenet. '
'You can extend this code to other architectures.')
def _skip_gradient(args, iter, adv_img, true_label, target_label, grad_accumulate, grad_last,
input_trans_func, ensemble_models, loss_func):
gradient = general_grad()(args, iter, adv_img, true_label, target_label, grad_accumulate, grad_last,
input_trans_func, ensemble_models, loss_func)
return gradient
return _skip_gradient