diff --git a/content/ohbm2022abstract.ipynb b/content/ohbm2022abstract.ipynb index 8eb900d..484ecc5 100644 --- a/content/ohbm2022abstract.ipynb +++ b/content/ohbm2022abstract.ipynb @@ -68,13 +68,19 @@ "\n", "H-T Wang[^1], S L Meisler[^2][^3], H Shamarke, F Paugam[^1][^4], N Gensollen[^5], B Thirion[^5], C Markiewicz[^6], P Bellec[^1][^7]\n", "\n", - "[^1] Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada\n", - "[^2] Harvard University, MA, USA\n", - "[^3] Massachusetts Institute of Technology, MA, USA\n", - "[^4] Computer Science and Operations Research Department, Université de Montréal, Montréal, Québec, Canada\n", - "[^5] Inria, CEA, Université Paris-Saclay, Paris, France\n", - "[^6] Department of Psychology, Stanford University, Stanford, United States\n", - "[^7] Psychology Department, Université de Montréal, Montréal, Québec, Canada\n", + "[^1]: Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada\n", + "\n", + "[^2]: Harvard University, MA, USA\n", + "\n", + "[^3]: Massachusetts Institute of Technology, MA, USA\n", + "\n", + "[^4]: Computer Science and Operations Research Department, Université de Montréal, Montréal, Québec, Canada\n", + "\n", + "[^5]: Inria, CEA, Université Paris-Saclay, Paris, France\n", + "\n", + "[^6]: Department of Psychology, Stanford University, Stanford, United States\n", + "\n", + "[^7]: Psychology Department, Université de Montréal, Montréal, Québec, Canada\n", "\n", "### Introduction\n", "\n", @@ -161,7 +167,7 @@ "ax.set(ylabel=\"Percentage %\",\n", " xlabel=\"confound removal strategy\")\n", "plt.tight_layout()\n", - "plt.savefig(\"sig_qcfc.png\", dpi=300)" + "# plt.savefig(\"sig_qcfc.png\", dpi=300)" ] }, { @@ -208,7 +214,7 @@ "ax.set(ylabel=\"Median absolute deviation\",\n", " xlabel=\"confound removal strategy\")\n", "plt.tight_layout()\n", - "plt.savefig(\"mad_qcfc.png\", dpi=300)\n", + "# plt.savefig(\"mad_qcfc.png\", dpi=300)\n", "\n", "def draw_absolute_median(data, **kws):\n", " ax = plt.gca()\n", @@ -236,7 +242,7 @@ "g.fig.subplots_adjust(top=0.9) \n", "g.fig.suptitle('Distribution of correlation between framewise distplacement and edge strength')\n", "plt.tight_layout()\n", - "plt.savefig(\"dist_qcfc.png\", dpi=300)" + "# plt.savefig(\"dist_qcfc.png\", dpi=300)" ] }, { @@ -298,7 +304,7 @@ "ax.set(ylabel=\"Nodewise correlation between\\nEuclidian distance and QC-FC metric\",\n", " xlabel=\"confound removal strategy\")\n", "plt.tight_layout()\n", - "plt.savefig(\"corr_dist_qcfc_mean.png\", dpi=300)\n", + "# plt.savefig(\"corr_dist_qcfc_mean.png\", dpi=300)\n", "\n", "g = sns.FacetGrid(long_qcfc, col=\"col\", row=\"row\", height=1.7, aspect=1.5)\n", "g.map(sns.regplot, 'distance', 'qcfc', fit_reg=True, ci=None, \n", @@ -316,7 +322,7 @@ "g.fig.subplots_adjust(top=0.9) \n", "g.fig.suptitle('Correlation between nodewise Euclidian distance and QC-FC')\n", "plt.tight_layout()\n", - "plt.savefig(\"corr_dist_qcfc_dist.png\", dpi=300)" + "# plt.savefig(\"corr_dist_qcfc_dist.png\", dpi=300)" ] }, { @@ -382,7 +388,7 @@ "ax.set(ylabel=\"Pearson's correlation\",\n", " xlabel=\"confound removal strategy\")\n", "plt.tight_layout()\n", - "plt.savefig(\"modularity.png\", dpi=300)" + "# plt.savefig(\"modularity.png\", dpi=300)" ] }, { diff --git a/content/ohbm2022abstract.md b/content/ohbm2022abstract.md index b86aa3a..d3951e6 100644 --- a/content/ohbm2022abstract.md +++ b/content/ohbm2022abstract.md @@ -59,13 +59,19 @@ metric_per_edge.columns = [col.split('_')[0] for col in metric_per_edge.columns] H-T Wang[^1], S L Meisler[^2][^3], H Shamarke, F Paugam[^1][^4], N Gensollen[^5], B Thirion[^5], C Markiewicz[^6], P Bellec[^1][^7] -[^1] Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada -[^2] Harvard University, MA, USA -[^3] Massachusetts Institute of Technology, MA, USA -[^4] Computer Science and Operations Research Department, Université de Montréal, Montréal, Québec, Canada -[^5] Inria, CEA, Université Paris-Saclay, Paris, France -[^6] Department of Psychology, Stanford University, Stanford, United States -[^7] Psychology Department, Université de Montréal, Montréal, Québec, Canada +[^1]: Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada + +[^2]: Harvard University, MA, USA + +[^3]: Massachusetts Institute of Technology, MA, USA + +[^4]: Computer Science and Operations Research Department, Université de Montréal, Montréal, Québec, Canada + +[^5]: Inria, CEA, Université Paris-Saclay, Paris, France + +[^6]: Department of Psychology, Stanford University, Stanford, United States + +[^7]: Psychology Department, Université de Montréal, Montréal, Québec, Canada ### Introduction @@ -131,7 +137,7 @@ ax.set_xticklabels(ax.get_xticklabels(), rotation=90) ax.set(ylabel="Percentage %", xlabel="confound removal strategy") plt.tight_layout() -plt.savefig("sig_qcfc.png", dpi=300) +# plt.savefig("sig_qcfc.png", dpi=300) ``` ```{code-cell} ipython3 @@ -146,7 +152,7 @@ ax.set_xticklabels(ax.get_xticklabels(), rotation=90) ax.set(ylabel="Median absolute deviation", xlabel="confound removal strategy") plt.tight_layout() -plt.savefig("mad_qcfc.png", dpi=300) +# plt.savefig("mad_qcfc.png", dpi=300) def draw_absolute_median(data, **kws): ax = plt.gca() @@ -174,7 +180,7 @@ for i, name in zip(range(9), metric_per_edge.columns): g.fig.subplots_adjust(top=0.9) g.fig.suptitle('Distribution of correlation between framewise distplacement and edge strength') plt.tight_layout() -plt.savefig("dist_qcfc.png", dpi=300) +# plt.savefig("dist_qcfc.png", dpi=300) ``` #### Distance-dependent effects of motion on connectivity @@ -199,7 +205,7 @@ ax.set(ylim=(-0.5, 0.05)) ax.set(ylabel="Nodewise correlation between\nEuclidian distance and QC-FC metric", xlabel="confound removal strategy") plt.tight_layout() -plt.savefig("corr_dist_qcfc_mean.png", dpi=300) +# plt.savefig("corr_dist_qcfc_mean.png", dpi=300) g = sns.FacetGrid(long_qcfc, col="col", row="row", height=1.7, aspect=1.5) g.map(sns.regplot, 'distance', 'qcfc', fit_reg=True, ci=None, @@ -217,7 +223,7 @@ for i, name in zip(range(9), metric_per_edge.columns): g.fig.subplots_adjust(top=0.9) g.fig.suptitle('Correlation between nodewise Euclidian distance and QC-FC') plt.tight_layout() -plt.savefig("corr_dist_qcfc_dist.png", dpi=300) +# plt.savefig("corr_dist_qcfc_dist.png", dpi=300) ``` #### Network modularity @@ -258,7 +264,7 @@ ax.set_title("Correlation between\nnetwork modularity and \nmean framewise displ ax.set(ylabel="Pearson's correlation", xlabel="confound removal strategy") plt.tight_layout() -plt.savefig("modularity.png", dpi=300) +# plt.savefig("modularity.png", dpi=300) ``` ### Conclusions