-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathchunk_eval_iterative.yaml
35 lines (29 loc) · 1.15 KB
/
chunk_eval_iterative.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# @package _global_
# Experiment config that evaluates a global model versus an ensemble model iteratively on increasing amounts of chunks, simulating the situation where new data is streaming in.
defaults:
- chunk_eval
- _self_
# These two directories should contain chunk_idx_end # models, each trained on one chunk (ensemble) or cumulative chunks (global)
ensemble_model_dir: "path/to/ensemble/models"
global_model_dir: "path/to/global/models"
chunk_idx_end: ???
model_type: ???
hydra:
mode: "MULTIRUN"
sweeper:
params:
# starting on chunk #3 (because ensemble requires at least two models, and we predict on the next one)
# and include chunk_idx_end (thus + 1)
++datamodule.chunk_idx: range(2, ${eval:'int(${chunk_idx_end}) + 1'})
datamodule:
train_val_test_split:
val: null
test: 1.0
train: null
chunk_length: ???
crop_data_range: null
# chunk_idx is set in hydra.sweeper.params
logger:
mlflow:
experiment_name: ???
model_dir: ${eval:'["${ensemble_model_dir}/" + str(i) for i in range(${datamodule.chunk_idx})] if "${model_type}" == "ensemble" else "${global_model_dir}/" + str(${datamodule.chunk_idx} - 1)'}