-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathautomated_local_coregistration_algorithm.py
286 lines (241 loc) · 11.7 KB
/
automated_local_coregistration_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# -*- coding: utf-8 -*-
"""
/***************************************************************************
Coregistration
A QGIS plugin processing
Image co-registration, projection and pixel alignment based on a target image
-------------------
copyright : (C) 2021-2024 by Xavier Corredor Llano, SMByC
email : [email protected]
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
"""
import os
import platform
from qgis.PyQt.QtGui import QIcon
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (QgsProcessingAlgorithm, QgsProcessingParameterRasterDestination, QgsProcessingParameterRasterLayer,
QgsProcessingParameterNumber, QgsProcessingParameterDefinition, QgsProcessingParameterEnum,
QgsProcessingParameterBoolean, QgsProcessingUtils)
from Coregistration.utils.system_utils import get_raster_driver_name_by_extension
class AutomatedLocalCoregistrationAlgorithm(QgsProcessingAlgorithm):
"""
This algorithm compute a specific statistic using the time
series of all pixels across (the time) all raster in the specific band
"""
# Constants used to refer to parameters and outputs. They will be
# used when calling the algorithm from another algorithm, or when
# calling from the QGIS console.
IMG_REF = 'IMG_REF'
INPUT = 'INPUT'
ALIGN_GRIDS = "ALIGN_GRIDS"
MATCH_GSD = "MATCH_GSD"
GRID_RES = 'GRID_RES'
WINDOW_SIZE = 'WINDOW_SIZE'
MAX_SHIFT = 'MAX_SHIFT'
RESAMPLING = 'RESAMPLING'
MASK = 'MASK'
OUTPUT = 'OUTPUT'
resampling_methods = (
('Nearest Neighbour', 'nearest'),
('Bilinear', 'bilinear'),
('Cubic', 'cubic'),
('Cubic Spline', 'cubic_spline'),
('Lanczos Windowed Sinc', 'lanczos'),
('Average', 'average'),
('Mode', 'mode'),
('Maximum', 'max'),
('Minimum', 'min'),
('Median', 'med'),
('First Quartile', 'q1'),
('Third Quartile', 'q3'))
def __init__(self):
super().__init__()
def tr(self, string, context=''):
if context == '':
context = self.__class__.__name__
return QCoreApplication.translate(context, string)
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it..
"""
html_help = '''
<p>Detects and corrects local X/Y shifts misregistrations between two input images in the subpixel scale \
using the content of the pixels in the matching window. Perform automatic subpixel co-registration of image \
datasets based on an image matching approach working in the frequency domain, combined with a multistage \
workflow for effective detection of false-positives [1].
It is designed to robustly handle the typical \
difficulties of multi-sensoral/multi-temporal images. Clouds are automatically handled by the implemented \
outlier detection algorithms [1].
This local algorithm is useful when the target image requires different pixel shifts in distances and \
directions. The precision of this is based on mainly in two input parameters: tie point grid resolution and \
matching window size.
This is significantly more comprehensive and slower than global algorithm.
[1] This algorithm use Arosics software developed by Daniel Scheffler, for more info \
<a href="https://danschef.git-pages.gfz-potsdam.de/arosics/doc/">url</a> and \
<a href="https://doi.org/10.3390/rs9070676">paper</a> \
</p>'''
return html_help
def createInstance(self):
return AutomatedLocalCoregistrationAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'Automated local Co-Registration'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr(self.name())
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return None
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return None
def icon(self):
return QIcon(":/plugins/Coregistration/icons/coregistration.svg")
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
self.addParameter(
QgsProcessingParameterRasterLayer(
self.IMG_REF,
self.tr('The REFERENCE image to use as based to co-register the target image')
)
)
self.addParameter(
QgsProcessingParameterRasterLayer(
self.INPUT,
self.tr('The TARGET image for co-register'),
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.ALIGN_GRIDS,
self.tr('Align the input coordinate grid to the reference'),
defaultValue=True,
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.MATCH_GSD,
self.tr('Match the input pixel size to the reference pixel size'),
defaultValue=True,
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.GRID_RES,
self.tr('Tie point grid resolution (pixel units of the target image)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=200,
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.WINDOW_SIZE,
self.tr('Custom matching window size (width and height in pixel units)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=256,
)
)
parameter = \
QgsProcessingParameterNumber(
self.MAX_SHIFT,
self.tr('Maximum shift distance in reference image pixel units'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=5,
optional=False
)
parameter.setFlags(parameter.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(parameter)
parameter = \
QgsProcessingParameterEnum(
self.RESAMPLING,
self.tr('The resampling algorithm to be used for shift correction (if necessary)'),
options=[i[0] for i in self.resampling_methods],
defaultValue=2,
optional=False
)
parameter.setFlags(parameter.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(parameter)
self.addParameter(
QgsProcessingParameterRasterDestination(
self.OUTPUT,
self.tr('Output raster file co-registered')
)
)
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
try:
from arosics import COREG_LOCAL
except:
msg = "\nError loading Arosics, this plugin requires additional Python packages to work. " \
"Read the install instructions here:\n\n" \
"https://github.com/SMByC/Coregistration-Qgis-processing#installation\n\n"
feedback.reportError(msg, fatalError=True)
return {}
def get_inputfilepath(layer):
return os.path.realpath(layer.source().split("|layername")[0])
img_ref = get_inputfilepath(self.parameterAsRasterLayer(parameters, self.IMG_REF, context))
img_tgt = get_inputfilepath(self.parameterAsRasterLayer(parameters, self.INPUT, context))
align_grids = self.parameterAsBoolean(parameters, self.ALIGN_GRIDS, context)
match_gsd = self.parameterAsBoolean(parameters, self.MATCH_GSD, context)
grid_res = self.parameterAsInt(parameters, self.GRID_RES, context)
window_size = self.parameterAsInt(parameters, self.WINDOW_SIZE, context)
max_shift = self.parameterAsInt(parameters, self.MAX_SHIFT, context)
resampling_method = self.resampling_methods[self.parameterAsEnum(parameters, self.RESAMPLING, context)][1]
output_file = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
output_driver_name = get_raster_driver_name_by_extension(output_file)
# fix save and load ENVI files
if output_driver_name == "ENVI":
output_file_envi = output_file.replace(".hdr", ".dat")
if context.willLoadLayerOnCompletion(output_file):
layer_detail = context.LayerDetails(os.path.basename(output_file_envi), context.project(),
os.path.basename(output_file_envi), QgsProcessingUtils.LayerHint.Raster)
context.setLayersToLoadOnCompletion({output_file_envi: layer_detail})
output_file = output_file_envi
feedback.pushInfo("Image to image Co-Registration:")
feedback.pushInfo("\nProcessing file: " + img_tgt)
feedback.pushInfo("\nPerform automatic subpixel co-registration with Arosics...")
feedback.pushInfo("\n(To check the complete log of the process, open the Python Console)...")
if platform.system() == "Windows":
feedback.reportError("\nWarning: in Windows due to restrictions to enable multiprocessing inside Qgis, "
"the process could take longer. Continue with one core ...\n", fatalError=False)
CRL = COREG_LOCAL(img_ref, img_tgt, path_out=output_file, align_grids=align_grids, match_gsd=match_gsd,
grid_res=grid_res, window_size=(window_size, window_size),
resamp_alg_deshift=resampling_method, max_shift=max_shift, max_iter=15,
fmt_out=output_driver_name, out_crea_options=["WRITE_METADATA=NO"],
CPUs=1)
CRL.correct_shifts()
feedback.pushInfo("DONE\n")
return {self.OUTPUT: output_file}