-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeople_counter.py
182 lines (167 loc) · 6.29 KB
/
people_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from datetime import timedelta
from math import sqrt
from time import time
import cv2 as cv
import dlib
import imutils
import numpy as np
class PeopleCounter:
def __init__(self, input_video, output_video, prototxt, caffemodel, skip_frames, confidence, distance):
self._input_video = input_video
self._output_video = output_video
self._prototxt = prototxt
self._caffemodel = caffemodel
self._skip_frames = skip_frames
self._confidence = confidence
self._distance = distance
self._net = None
self._video = None
self._width = None
self._height = None
self._frames = None
self._fps = None
self._writer = None
self._image = None
self._status = None
self._trackers = []
self._people = {}
self._counter = 0
self._total_up = 0
self._total_down = 0
def init(self):
self._net = cv.dnn.readNetFromCaffe(self._prototxt, self._caffemodel)
self._video = cv.VideoCapture(self._input_video)
width = self._video.get(cv.CAP_PROP_FRAME_WIDTH)
self._width = int(width)
height = self._video.get(cv.CAP_PROP_FRAME_HEIGHT)
self._height = int(height)
frames = self._video.get(cv.CAP_PROP_FRAME_COUNT)
self._frames = int(frames)
fps = self._video.get(cv.CAP_PROP_FPS)
self._fps = int(fps)
fourcc = cv.VideoWriter_fourcc(*'MJPG')
self._writer = cv.VideoWriter(self._output_video, fourcc, self._fps, (self._width, self._height), True)
def start(self):
for frame in range(self._frames):
start = time()
self._update(frame)
self._render(frame)
self._writer.write(self._image)
finish = time()
delay = int(1000 / self._fps - (finish - start) * 1000)
delay = max(delay, 1)
key = cv.waitKey(delay)
if key == 27:
break
self._stop()
def _update(self, frame):
self._status = 'Waiting'
_, image = self._video.read()
width = min(self._width, 500)
self._image = imutils.resize(image, width=width)
rgb = cv.cvtColor(self._image, cv.COLOR_BGR2RGB)
if frame % self._skip_frames == 0:
self._detect(rgb)
else:
for tracker in self._trackers:
self._status = 'Tracking'
tracker.update(rgb)
self._track()
def _detect(self, rgb):
self._status = 'Detecting'
self._trackers = []
blob = cv.dnn.blobFromImage(self._image, 0.007843, (self._width, self._height), 127.5)
self._net.setInput(blob)
detections = self._net.forward()
for detection in detections[0, 0]:
category = int(detection[1])
confidence = detection[2]
if category == 15 and confidence >= self._confidence:
bounds = np.array([self._width, self._height, self._width, self._height])
box = detection[3:7] * bounds
box = box.astype(int)
rect = dlib.rectangle(*box)
tracker = dlib.correlation_tracker()
tracker.start_track(rgb, rect)
self._trackers.append(tracker)
def _track(self):
trackers = self._trackers.copy()
disappeared = []
for pid, positions in self._people.items():
tracker = self._nearest(pid, trackers)
if tracker:
position = self._position(tracker)
positions.append(position)
trackers.remove(tracker)
else:
disappeared.append(pid)
for pid in disappeared:
positions = self._people[pid]
first = positions[0]
last = positions[-1]
_, first = self._center(first)
_, last = self._center(last)
if first < last:
self._total_down += 1
else:
self._total_up += 1
del self._people[pid]
for tracker in trackers:
position = self._position(tracker)
self._people[self._counter] = [position]
self._counter += 1
def _nearest(self, pid, trackers):
positions = self._people[pid]
for tracker in trackers:
position = self._position(tracker)
last = positions[-1]
dist = self._dist(position, last)
if dist <= self._distance:
return tracker
def _render(self, frame):
for pid, positions in self._people.items():
text = str(pid)
last = positions[-1]
start, end = last
x, y = self._center(last)
cv.putText(self._image, text, (x + 8, y + 4), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)
cv.circle(self._image, (x, y), 2, (0, 255, 255), 2)
cv.rectangle(self._image, start, end, (255, 0, 0))
for position in positions:
center = self._center(position)
cv.circle(self._image, center, 1, (0, 255, 0))
elapsed = timedelta(milliseconds=frame * 1000 / self._fps)
info = [
('Time', elapsed),
('Status', self._status),
('Up', self._total_up),
('Down', self._total_down),
('Total', self._counter)
]
for i, (label, value) in enumerate(info):
text = f'{label}: {value}'
org = 10, (i * 20) + 20
cv.putText(self._image, text, org, cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv.imshow('Frame', self._image)
def _position(self, tracker):
position = tracker.get_position()
left = position.left()
top = position.top()
right = position.right()
bottom = position.bottom()
start = int(left), int(top)
end = int(right), int(bottom)
return start, end
def _center(self, position):
(left, top), (right, bottom) = position
return (left + right) // 2, (top + bottom) // 2
def _dist(self, a, b):
ac = self._center(a)
bc = self._center(b)
dx = ac[0] - bc[0]
dy = ac[1] - bc[1]
return sqrt(dx ** 2 + dy ** 2)
def _stop(self):
cv.destroyAllWindows()
self._writer.release()
self._video.release()